一种基于滤波增强自编码器的电能表异常检测方法及装置

    公开(公告)号:CN117272055B

    公开(公告)日:2024-02-06

    申请号:CN202311567852.4

    申请日:2023-11-23

    Abstract: 本发明涉及一种基于滤波增强自编码器的电能表异常检测方法及装置,属于电力设备检测技术领域。将预处理后的多维时间序列数据输入自编码器和滤波器,输出第一重构多维时间序列数据和第一噪声分量,将第一重构多维时间序列数据输入自编码器和滤波器,输出第二重构多维时间序列数据和第二噪声分量;构建自编码器损失函数和滤波器损失函数,并基于自编码器损失函数和滤波器损失函数构建电能表异常检测损失函数以对自编码器和滤波器进行迭代训练,将训练好的自编码器作为电能表异常检测模型以对待检测多维时间序列数据进行检测。本发明减小了噪声和异常对自编码器的干扰,提高了重构(56)对比文件US 2023351158 A1,2023.11.02白雅玲.基于深度学习的客户用能分类及异常检测研究《.中国优秀硕士学位论文全文数据库 工程科技II辑》.2023,C042-2856.曹帅.基于深度学习的脑电信号分类方法研究《.中国优秀硕士学位论文全文数据库 医药卫生科技辑》.2018,E080-17.赵经宇.基于无监督学习的网络异常流量检测研究《.中国优秀硕士学位论文全文数据库 信息科技辑》.2023,I139-159.蔡木庆.基于深度学习的复杂时间序列分析和预测《.中国优秀硕士学位论文全文数据库 基础科学辑》.2021,A002-922.Jae Seok Do 等.LSTM-Autoencoder forVibration Anomaly Detection in VerticalCarousel Storage and Retrieval System.《Sensors》.2023,1-22.

    一种基于大数据的电力线损分析设备

    公开(公告)号:CN114200171A

    公开(公告)日:2022-03-18

    申请号:CN202111467807.2

    申请日:2021-12-03

    Abstract: 本发明属于电网线损运维管理技术领域,具体涉及一种基于大数据的电力线损分析设备,包括:前端采集装置和后台大数据处理器,前端采集装置包括:线损分析仪组件和防护组件,线损分析仪组件用于采集电网数据,线损分析仪组件包括:安装箱体、线损分析仪本体、供电电源和通信单元,线损分析仪本体、供电电源和通信单元均设置于安装箱体中,安装箱体的上端设置有连通套管,连通套管用于穿过导线,线损分析仪本体与待监测网路之间通过导线连接,所述线损分析仪本体通过所述通信单元与所述后台大数据处理器相连接,后台大数据处理器对线损分析仪本体发出的数据分析结果进行处理,所述安装箱体外端设置有所述防护组件。

Patent Agency Ranking