-
公开(公告)号:CN117132853A
公开(公告)日:2023-11-28
申请号:CN202310631473.0
申请日:2023-05-31
Applicant: 安徽大学
IPC: G06V10/80 , G01N21/25 , G06V20/10 , G06V10/771 , G06F17/18
Abstract: 本发明涉及一种基于CARS‑Ridge算法融合新型指数的小麦赤霉病识别方法,包括:获得小麦赤霉病冠层高光谱数据;通过CARS、PCA和SPA三种算法对获取的小麦赤霉病冠层高光谱数据进行降维;通过RF、PLSR和Ridge三种算法进行建模,得到9个小麦赤霉病识别模型;通过对9个小麦赤霉病识别模型的结果进行十折交叉验证,确定最优模型;构建两个新型指数;将新型指数与最优模型进行融合,得到最优小麦赤霉病识别模型。本发明通过数据降维并结合新型指数构建评价了高光谱数据在小麦赤霉病识别中的应用潜力,提出了CARS‑Ridge算法和新型指数的开发,确定了最准确的小麦赤霉病识别模型,即最优小麦赤霉病识别模型;大大提高了现有病害反演的精度,克服了小麦赤霉病识别不准确的缺陷。
-
公开(公告)号:CN118195331A
公开(公告)日:2024-06-14
申请号:CN202311811653.3
申请日:2023-12-27
Applicant: 安徽大学
IPC: G06Q10/0637 , G06Q10/067 , G06Q50/02 , G06F18/10 , G06F18/213 , G06F18/214
Abstract: 本发明涉及一种基于多源卫星遥感的水稻纹枯病生境适宜性分析方法,包括:获取多源数据;对多源数据进行预处理;进行特征因子的筛选;采用八种模型进行建模,经筛选得到八个初步模型;对比和分析各个初步模型的精度,筛选出初步模型进行集成,得到生境适宜性分析模型,将待分析区域的筛选后的特征因子输入,输出待分析区域的水稻纹枯病生境适宜性结果;对水稻纹枯病生境适宜性结果进行分析,研究纹枯病适生区的分布,变化和主要影响因素。本发明通过生境适宜性分析模型有助于综合考虑影响水稻纹枯病的各特征因子,通过生境适宜性分析模型和时空分析方法,可以及早预警纹枯病可能出现的新生境,从而采取防范措施,减轻其对农业生产的影响。
-
公开(公告)号:CN117150351A
公开(公告)日:2023-12-01
申请号:CN202310917381.9
申请日:2023-07-25
Applicant: 安徽大学
IPC: G06F18/241 , G01D21/02 , G06Q50/26
Abstract: 本发明涉及一种基于MaxEnt和时空立方体的也门沙漠蝗生境适宜性评估方法,包括:获取多源数据;对多源数据进行预处理;进行生境因子的筛选;获得参数最优的MaxEnt模型,对参数最优的MaxEnt模型进行训练,获取也门沙漠蝗年际的生境适宜性结果;构建时空立方体;进行时空一体化分析;根据时空一体化分析结果,给也门的沙漠蝗适宜性划分等级。本发明综合评价生态位条件,MaxEnt模型有助于综合考虑也门沙漠蝗的生态位条件;预测潜在适宜区域,考虑时空变化,时空立方体方法允许在时间和空间上跟踪沙漠蝗生境适宜性变化;提前预警,通过生态位模型和时空立方体方法,可以及早预警沙漠蝗可能出现的新生境,从而采取防范措施,减轻其对农业和生态系统的影响。
-
公开(公告)号:CN117197807A
公开(公告)日:2023-12-08
申请号:CN202311220559.0
申请日:2023-09-20
Applicant: 安徽大学
IPC: G06V20/69 , G06V10/44 , G06N3/045 , G06N3/0464 , G06N3/084
Abstract: 本发明涉及基于YOLOv4‑tiny轻量化模型的小麦赤霉病孢子识别方法,与现有技术相比解决了赤霉病孢子检测准确率低、检测速度慢、计算量大的缺陷。本发明包括以下步骤:孢子图像数据集的建立;构建轻量化孢子识别模型;轻量化孢子识别模型的训练;待识别孢子图像的获取;小麦赤霉病孢子识别结果的获得。本发明利用YOLOv4‑tiny具有更高的检测速度和较好的实时性的特点,在保证准确性的同时实现快速检测;本发明通过将YOLOv4主干特征提取网络CSPDarknet53模块替换为CSPDarknet53_tiny模块,有效的实现了小麦赤霉病孢子快速准确检测识别。
-
-
-