基于光谱-空间自注意力和Transformer网络的高光谱图像分类方法

    公开(公告)号:CN117315481B

    公开(公告)日:2025-03-21

    申请号:CN202311369853.8

    申请日:2023-10-23

    Applicant: 安徽大学

    Abstract: 本发明涉及一种基于光谱‑空间自注意力和Transformer网络的高光谱图像分类方法,包括:输入高光谱图像;使用主成分分析进行降维,得到降维后的高光谱图像;通过CBAM模块进行初步的光谱‑空间特征学习;进行初步特征学习;再经过光谱注意力模块得到光谱特征,最后继续挖掘光谱特征;输入空间注意力模块;输入Transformer模块,对全局特征进行学习;将经过全局特征学习的高光谱图像,最后经过全局池化、展平、批归一化和线性层,得到最终分类结果。本发明通过对高光谱图像作为研究对象,使用二维卷积能够在保持计算效率的同时减少计算量和节约成本;实现轻量级、高效率的特征提取和通道选择,提高了中心特征向量识别的准确性,增强了空间提取能力。

    基于光谱-空间自注意力和Transformer网络的高光谱图像分类方法

    公开(公告)号:CN117315481A

    公开(公告)日:2023-12-29

    申请号:CN202311369853.8

    申请日:2023-10-23

    Applicant: 安徽大学

    Abstract: 本发明涉及一种基于光谱‑空间自注意力和Transformer网络的高光谱图像分类方法,包括:输入高光谱图像;使用主成分分析进行降维,得到降维后的高光谱图像;通过CBAM模块进行初步的光谱‑空间特征学习;进行初步特征学习;再经过光谱注意力模块得到光谱特征,最后继续挖掘光谱特征;输入空间注意力模块;输入Transformer模块,对全局特征进行学习;将经过全局特征学习的高光谱图像,最后经过全局池化、展平、批归一化和线性层,得到最终分类结果。本发明通过对高光谱图像作为研究对象,使用二维卷积能够在保持计算效率的同时减少计算量和节约成本;实现轻量级、高效率的特征提取和通道选择,提高了中心特征向量识别的准确性,增强了空间提取能力。

    一种无人机用多角度采集装置

    公开(公告)号:CN115773449A

    公开(公告)日:2023-03-10

    申请号:CN202211443970.X

    申请日:2022-11-18

    Applicant: 安徽大学

    Abstract: 本发明公开了一种无人机用多角度采集装置,涉及无人机图像采集领域,本发明包括安装机构,包括安装板;采集机构,其设置于安装机构一侧,包括设于安装板一侧的调节组件以及设于调节组件一侧的采集组件,调节组件包括设于安装板一侧的两个限位板以及与限位板活动连接的丝杆;防护机构,其设置于是谁安装机构一侧,包括设于安装板上的防护板。本发明一种无人机用多角度采集装置,通过第一电机带动丝杆转动,使得移动板在水平方向上进行调节,再使用第二电机带动调节轴转动,使得摄像头在竖直方向上移动,从而完成摄像头多角度采集图像的目的,能够对作物的表型进行全面的收集,降低了无人机操控的难度,提高了采集效率。

    基于自注意力机制的草莓病害图像识别方法

    公开(公告)号:CN115019303A

    公开(公告)日:2022-09-06

    申请号:CN202210892609.9

    申请日:2022-07-27

    Applicant: 安徽大学

    Abstract: 本发明涉及基于自注意力机制的草莓病害图像识别方法,与现有技术相比解决了草莓病害图像难以识别的缺陷。本发明包括以下步骤:获取草莓病害图像数据集并进行预处理;构建草莓病害分类识别模型;构建草莓病害自注意力机制模块;草莓病害分类识别模型的训练;待识别草莓病害图像的获得;待识别草莓病害图像结果的获得。本发明解决现阶段草莓病害识别精度问题,使用数据增强处理草莓病害图像,并提出了自注意力机制模块,结合使用草莓病害分类识别模型作为骨干网络加快草莓病害的识别速度与准确度。

Patent Agency Ranking