-
公开(公告)号:CN109602416A
公开(公告)日:2019-04-12
申请号:CN201910018584.8
申请日:2019-01-09
申请人: 山东省计算中心(国家超级计算济南中心) , 山东大学齐鲁医院
IPC分类号: A61B5/0402
摘要: 一种ECG信号联合基线校正及降噪的方法,使得经过基线校正和降噪后恢复的信号,能够保持原始信号的平滑,并且恢复的信号基本保留了原始信号的细节信息特征。有效地进行了基线校正和噪声抑制,明显改善了传统滤波算法中存在的ECG峰值欠估计的问题,保证了恢复ECG信号的真实性。
-
公开(公告)号:CN105748063A
公开(公告)日:2016-07-13
申请号:CN201610259531.1
申请日:2016-04-25
申请人: 山东大学齐鲁医院 , 山东省计算中心(国家超级计算济南中心)
IPC分类号: A61B5/0402 , A61B5/024 , G06F19/00
CPC分类号: A61B5/0402 , A61B5/024 , A61B5/7264 , A61B5/7267 , G16H50/20
摘要: 本发明的基于多导联和卷积神经网络的心律失常智能诊断方法,包括:a).选取数据样本;b).标注心律失常类型;c).截取导联的心跳信号;d).得到归一化的心跳集合;e).构建隐层和输出层;f).设定目标函数;g).样本训练;h).心律失常分类的应用。本发明的心律失常智能诊断方法,利用多导联心电图数据训练CNN能够提高网络的学习效率和心律失常自动诊断的精度,实现了使用有心律失常类型标注多导联心电图数据训练CNN的通用框架和具体方法,可准确判断出待诊断心电信号的心律失常类型,可作为确诊结果或供医生参考。
-
公开(公告)号:CN111419220A
公开(公告)日:2020-07-17
申请号:CN202010227774.3
申请日:2020-03-27
申请人: 山东省人工智能研究院 , 山东省计算中心(国家超级计算济南中心) , 山东大学齐鲁医院
摘要: 一种基于共振稀疏分解的十二导联心电信号房颤检测方法,根据房颤信号的特点,利用共振稀疏分解对心电信号进行处理,将分解出的低共振分量部分送入神经网络中进行训练,逐个导联训练后通过投票算法(Voting)将各训练模型得出的概率进行联合运算,得到最终的检测结果,用于房颤检测时无需额外手工提取其他特征,网络结构简单,缩短了运算时间,可以实现实时房颤信号检测。针对房颤信号中“P波消失,出现F波”的表现特点,以共振稀疏分解为基础,突出房颤信号特点,通过简单的神经网络结构,保准准确率的基础上减少了运算时间。
-
公开(公告)号:CN116129143B
公开(公告)日:2023-09-08
申请号:CN202310100687.5
申请日:2023-02-08
申请人: 山东省人工智能研究院 , 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院)
摘要: 一种基于串并联网络特征融合的边缘阔提取方法,属于医学影像边缘轮廓提取技术领域,科学有效的捕获了CTA影像轮廓细节信息,自动学习不同的特征权重,强化目标区域特征,又将不同分辨率的特征图转换为高分辨率特征图并融合,提高CTA影像轮廓清晰度,保证了信息的完整性。该网络结构并没有增加网络的横向深度,而是纵向扩展了网络,增加了模型的非线性,降低了相邻像素点的相关性,更有利于清晰边缘的提取。
-
公开(公告)号:CN111460953B
公开(公告)日:2021-05-18
申请号:CN202010221886.8
申请日:2020-03-26
申请人: 山东省人工智能研究院 , 山东省计算中心(国家超级计算济南中心)
摘要: 一种基于对抗域自适应学习的心电信号分类方法,使用多尺度特征提取模块提取的特征是高度域不变的,减少了域间差异,源域样本训练的模型也可以在目标域上更好的应用,网络训练结束后,保存最优模型,将新的心拍样本输入到保存的最优模型中,获得最终分类效果。使用多特征提取器可以增加特征的丰富性,更加全面的提取心电信号的细节信息,同时使用对抗域自适应学习的方法,可改善不同域样本分布不同的现象,获得高度概括源域样本和目标域样本之间的域不变特征,通过这些特征训练一个对目标域高度适用的分类模型,可提高数据分布不同的跨域心电信号的分类精度。
-
公开(公告)号:CN111460956A
公开(公告)日:2020-07-28
申请号:CN202010222769.3
申请日:2020-03-26
申请人: 山东科技大学 , 山东省人工智能研究院 , 山东省计算中心(国家超级计算济南中心)
IPC分类号: G06K9/00 , G06N3/04 , A61B5/0402
摘要: 一种基于数据增强与损失加权的不平衡心电样本分类方法,通过对数据进行相应的处理实现了数据增强,增强了心拍样本的多样性和代表性,防止过拟合现象的发生;并通过批处理加权损失函数,使每一类心拍样本的权重处于一个动态的非线性变化的过程,得到一个较优的处理心拍类别样本不平衡的方法,分类结果优于现有的最先进的分类方法。可以积极推动便携式心律失常时检测设备的发展。
-
公开(公告)号:CN107122629A
公开(公告)日:2017-09-01
申请号:CN201710255286.1
申请日:2017-04-19
申请人: 山东省计算中心(国家超级计算济南中心)
CPC分类号: G06F21/121 , G06F21/602
摘要: 一种基于随机混淆的Android软件协同加固方法,包括如下步骤:a)解压获得classes.dex文件和bin文件;b)对classes.dex文件头header进行随机混淆;c)对源文件中的bin文件进行重命名;d)计算混淆后的classes.dex文件的hash值hash_dex;e)计算加载器loder的hash值hash_loder;f)对重命名后的bin文件进行加密并生成密文ciphertext;g)重新签名,打包生成加固后的APK。通过对dex头文件随机混淆加固以及对bin文件的安全动态加载加固。通过随机混淆的协同加固方法对Android软件进行保护,增强了代码的安全性。有效防止Android软件被恶意篡改或盗版的现象发生。
-
公开(公告)号:CN116468619B
公开(公告)日:2024-02-06
申请号:CN202310184267.X
申请日:2023-03-01
申请人: 山东省人工智能研究院 , 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院)
摘要: 一种基于多特征反馈融合的医学影像去噪方法,运用了采用了解码‑编码的网络框架,通过多特征反馈融合网络对图像进行特征提取。特征反馈融合网络由多特征反馈融合模块(MFFM)和并联扩张卷积模块组成。通过并联多个不同扩张率的扩张卷积层在提取浅层特征的同时既增大特征图的感受野,又保证信息不丢失。多特征反馈融合模块(MFFM)可以将进一步提取的深层特征以注意力机制的形式反馈给浅层特征,从而实现深层特征和浅层特征的深度融合。将融合后的特征图池化放大至相同尺寸可以保证输入特征图的shape不变。化特征向量,降低噪声因子的干扰。恢复特征图融合了关键像素特征,强化了特
-
公开(公告)号:CN116129143A
公开(公告)日:2023-05-16
申请号:CN202310100687.5
申请日:2023-02-08
申请人: 山东省人工智能研究院 , 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院)
摘要: 一种基于串并联网络特征融合的边缘阔提取方法,属于医学影像边缘轮廓提取技术领域,科学有效的捕获了CTA影像轮廓细节信息,自动学习不同的特征权重,强化目标区域特征,又将不同分辨率的特征图转换为高分辨率特征图并融合,提高CTA影像轮廓清晰度,保证了信息的完整性。该网络结构并没有增加网络的横向深度,而是纵向扩展了网络,增加了模型的非线性,降低了相邻像素点的相关性,更有利于清晰边缘的提取。
-
公开(公告)号:CN114780866A
公开(公告)日:2022-07-22
申请号:CN202210376638.X
申请日:2022-04-11
申请人: 山东省人工智能研究院 , 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学
IPC分类号: G06F16/9536 , G06F16/9537 , G06N3/04 , G06N3/08
摘要: 一种基于时空上下文兴趣学习模型的个性化智能推荐方法,使用图神经网络建模用户历史签到行为序列,通过创新图消息传播与聚合的拉普拉斯范数,融合兴趣点之间的交互关联性及空间关联性来获取兴趣点的高阶特征表示。同时编码日模式创新性的获取到了用户的长期兴趣,并使用长短期记忆网络捕获用户短期行为模式作为短期兴趣,通过层间注意力获取长短期兴趣。在此基础上进行候选兴趣点的概率计算作为推荐依据。通过图卷积的方式提高了兴趣点的特征提取效果,充分利用时空上下文挖掘用户的兴趣,以此进行推荐提高准确率,解决用户的出行需求。
-
-
-
-
-
-
-
-
-