一种高精度激光测量装置及方法

    公开(公告)号:CN114383739A

    公开(公告)日:2022-04-22

    申请号:CN202210058065.6

    申请日:2022-01-19

    IPC分类号: G01J9/00

    摘要: 本发明公开了一种高精度激光测量装置及方法,包括工作台,所述工作台顶部中心安装有原子气室,且工作台中心两侧安装有磁场系统,工作台顶部一侧固定连接有温控系统,且工作台顶部中心两侧对称安装有第一固定杆和第二固定杆,本发明引入原子气室作为法拉第原子滤光器来进行激光测量,通过调节的磁场的大小,改变原子在磁场的能级分裂值,从而改变原子跃迁频率,继而改变滤光器的滤过频率,即通过滤光器的频率可调,在知道特定条件下的滤光器的滤过频率的情况下,通过该滤光器的激光频率同样对比得出,有利于测量不同频率的激光,同时该种设备方法的测量精度高,波长精度可达0.001nm,并且本发明的设备简单,制造成本低。

    一种高精度激光波长测量装置及方法

    公开(公告)号:CN114383739B

    公开(公告)日:2024-09-10

    申请号:CN202210058065.6

    申请日:2022-01-19

    IPC分类号: G01J9/00

    摘要: 本发明公开了一种高精度激光波长测量装置及方法,包括工作台,所述工作台顶部中心安装有原子气室,且工作台中心两侧安装有磁场系统,工作台顶部一侧固定连接有温控系统,且工作台顶部中心两侧对称安装有第一固定杆和第二固定杆,本发明引入原子气室作为法拉第原子滤光器来进行激光测量,通过调节的磁场的大小,改变原子在磁场的能级分裂值,从而改变原子跃迁频率,继而改变滤光器的滤过频率,即通过滤光器的频率可调,在知道特定条件下的滤光器的滤过频率的情况下,通过该滤光器的激光频率同样对比得出,有利于测量不同频率的激光,同时该种设备方法的测量精度高,波长精度可达0.001nm,并且本发明的设备简单,制造成本低。

    提高钙钛矿太阳能电池器件稳定性的方法

    公开(公告)号:CN115666191A

    公开(公告)日:2023-01-31

    申请号:CN202211012677.8

    申请日:2022-08-23

    摘要: 本发明公开了提高钙钛矿太阳能电池器件稳定性的方法,包括以下步骤:步骤一,设计电池结构;步骤二,制备阴极;步骤三,制备电子传输层;步骤四,制备钙钛矿吸光层;步骤五,制备h‑BN保护层;步骤六,制备空穴传输层;步骤七,制备金属阳极;所述步骤二中,FTO导电玻璃的形状为1.5×2cm的方块,电阻为9‑10Ω,透光率为90%以上;本发明相较于现有的钙钛矿太阳能电池,通过将生长在衬底上的单层或多层的h‑BN二维材料进行图形化处理,然后采用干法转移的方式将其转移到钙钛矿薄膜表面,可以确保h‑BN薄膜完全且均匀的覆盖钙钛矿吸光层,从而有效地隔绝钙钛矿材料和空气中氧和水的接触,因而可以大大提高钙钛矿太阳能电池的稳定性。

    内置PN结硅基高压增强型氮化镓晶体管及制造方法

    公开(公告)号:CN111653618A

    公开(公告)日:2020-09-11

    申请号:CN202010378923.6

    申请日:2020-05-07

    IPC分类号: H01L29/778 H01L21/335

    摘要: 本发明涉及内置PN结硅基高压增强型氮化镓晶体管及其制造工艺。通过内置PN结结构调节电场分布的方式,可以提高EJ-高电子迁移率晶体管晶体管器件的击穿电压。内置PN结用于改善栅极和漏极之间的器件内部电场分布,从而实现更高的击穿电压。结构参数优化的EJ-高电子迁移率晶体管晶体管,当栅漏距离为15μm时可达到2050V的击穿电压性能,这归因于栅极和漏极之间器件内部电场分布的改善。优化的该类EJ-高电子迁移率晶体管结构晶体管,导通电阻为15.37Ωmm,功率半导体器件基础品质因数为2.734GWcm-2。与没有内置PN结的晶体管相比,新器件EJ-高电子迁移率晶体管将击穿电压提高了32.54%,功率半导体器件基础品质因数提高了71.3%,而两者的导通电阻相差不大。

    一种硅基GaN HEMT晶体管栅电流参数提取方法

    公开(公告)号:CN113745123A

    公开(公告)日:2021-12-03

    申请号:CN202010461418.8

    申请日:2020-05-27

    IPC分类号: H01L21/66 G06F30/337

    摘要: 本发明涉及一种硅基GaN HEMT晶体管栅电流参数提取方法,包括以下步骤:测试出GaN HEMT场效应晶体管的栅电流特性曲线;将硅基GaN HEMT器件测试得出的栅电流特性曲线与两个对数差分函数分别相减,得到截距以及两个不同斜率因子;将硅基GaN HEMT器件测试得出的栅电流特性曲线与任意一个对数差分函数相减,得到具有极值的差分函数谱曲线;在任意差分函数谱曲线上,获取二个极值点的栅电流极值;将获得的二个栅电流极值代入提取公式,可以提取得到一次栅电流的关键参数值;将两个对数差分函数谱提取的栅电流的关键参数值求平均值,得到栅电流关键参数值,这种方法简单、适用性强、误差小,能抑制小尺寸引起的器件短沟效应和非本征效应。

    一种硅基GaN HEMT晶体管栅电流参数提取方法

    公开(公告)号:CN113745123B

    公开(公告)日:2024-06-25

    申请号:CN202010461418.8

    申请日:2020-05-27

    IPC分类号: H01L21/66 G06F30/337

    摘要: 本发明涉及一种硅基GaN HEMT晶体管栅电流参数提取方法,包括以下步骤:测试出GaN HEMT场效应晶体管的栅电流特性曲线;将硅基GaN HEMT器件测试得出的栅电流特性曲线与两个对数差分函数分别相减,得到截距以及两个不同斜率因子;将硅基GaN HEMT器件测试得出的栅电流特性曲线与任意一个对数差分函数相减,得到具有极值的差分函数谱曲线;在任意差分函数谱曲线上,获取二个极值点的栅电流极值;将获得的二个栅电流极值代入提取公式,可以提取得到一次栅电流的关键参数值;将两个对数差分函数谱提取的栅电流的关键参数值求平均值,得到栅电流关键参数值,这种方法简单、适用性强、误差小,能抑制小尺寸引起的器件短沟效应和非本征效应。

    内置PN结硅基高压增强型氮化镓晶体管及制造方法

    公开(公告)号:CN111653618B

    公开(公告)日:2023-08-15

    申请号:CN202010378923.6

    申请日:2020-05-07

    IPC分类号: H01L29/778 H01L21/335

    摘要: 本发明涉及内置PN结硅基高压增强型氮化镓晶体管及其制造工艺。通过内置PN结结构调节电场分布的方式,可以提高EJ‑高电子迁移率晶体管晶体管器件的击穿电压。内置PN结用于改善栅极和漏极之间的器件内部电场分布,从而实现更高的击穿电压。结构参数优化的EJ‑高电子迁移率晶体管晶体管,当栅漏距离为15μm时可达到2050V的击穿电压性能,这归因于栅极和漏极之间器件内部电场分布的改善。优化的该类EJ‑高电子迁移率晶体管结构晶体管,导通电阻为15.37Ωmm,功率半导体器件基础品质因数为2.734GWcm‑2。与没有内置PN结的晶体管相比,新器件EJ‑高电子迁移率晶体管将击穿电压提高了32.54%,功率半导体器件基础品质因数提高了71.3%,而两者的导通电阻相差不大。