基于图神经网络的钢铁材料马氏体相变起始温度预测方法

    公开(公告)号:CN118629549A

    公开(公告)日:2024-09-10

    申请号:CN202410697379.X

    申请日:2024-05-31

    摘要: 本发明提供一种基于图神经网络的钢铁材料马氏体相变起始温度预测方法,涉及温度预测技术领域,本发明首先构建包含钢铁材料的化学成分、奥氏体晶粒尺寸、磁场以及预应变四个不同影响因素的数据库,从而得到基础数据集;基于基础数据集进行热力学知识图谱的构建,构建图卷积神经网络DDM‑GNN模型;设置迭代次数、学习率、批量以及损失函数,在进行热力学知识图谱中的特征和关系信息相融合时,采用矩阵拼接的方式来获得邻接卷积矩阵;采用全连接层来连接输出,得到预测的Ms温度;通过采用自适应矩估计法Adam对DDM‑DNN模型进行训练,最终取出训练过程中损失函数最小的模型作为最终模型Best_Model,实现温度预测。