摘要:
Trench capacitors are fabricated utilizing a method which results in a refractory metal salicide as a component of the trench electrode in a lower region of the trench. The salicide-containing trench electrode exhibits reduced series resistance compared to conventional trench electrodes of similar dimensions, thereby enabling reduced ground rule memory cell leats and/or reduced cell access time. The trench capacitors of the invention are especially useful as components of DRAM memory cells.
摘要:
An efficient method of forming deep junction implants in one region without affecting the implant of a second region of an integrated circuit is provided. This is achieved by forming spacers of deep junction devices with the same material used to fill the gaps of shallow junction devices.
摘要:
Trench capacitors are fabricated utilizing a method which results in a refractory metal salicide (32) as a component of the trench electrode (26,32,34) in a lower region of the trench. The salicide-containing trench electrode exhibits reduced series resistance compared to conventional trench electrodes of similar dimensions, thereby enabling reduced ground rule memory cell leats and/or reduced cell access time. The trench capacitors of the invention are especially useful as components of DRAM memory cells.
摘要:
An efficient method of forming deep junction implants in one region without affecting the implant of a second region of an integrated circuit is provided. This is achieved by forming spacers of deep junction devices with the same material used to fill the gaps of shallow junction devices.
摘要:
Dual work function doping is provided by doping a selected number of gate structures having self-aligned insulating layer on top of the structures through at least one side wall of the gate structures with a first conductivity type to thereby provide an array of gate structures whereby some are doped with the first conductivity type and others of the gate structures are doped with a second and different conductivity type. Also provided is an array of gate structures whereby the individual gate structures contain self-aligned insulating layer on their top portion and wherein some of the gate structures are doped with a first conductivity type and other of the gate structures are doped with a second and different conductivity type.
摘要:
The process rules for manufacturing semiconductor devices such as MOSFET's are modified to provide dual work-function doping following the customary gate sidewall oxidation step, greatly reducing thermal budget and boron penetration concerns. The concern of thermal budget is further significantly reduced by a device structure which allows a reduced gap aspect ratio while maintaining low sheet resistance values. A reduced gap aspect ratio also relaxes the need for highly reflowable dielectric materials and also facilitates the use of angled source-drain (S-D) and halo implants. Also provided is a novel structure and process for producing a MOSFET channel, lateral doping profile which suppresses short channel effects while providing low S-D junction capacitance and leakage, as well as immunity to hot-carrier effects. This also affords the potential for reduction in the contact stud-to-gate conductor capacitance, because borderless contacts can be formed with an oxide gate sidewall spacer. As a result, the S-D junctions can be doped independently of the gate conductor doping, more easily allowing a variety of MOSFET structures.
摘要:
A process is provided for the low temperature deposition of a thin film of borophosphosilicate glass (BPSG) for use in semiconductor devices, such as DRAMs. The process includes utilizing R-OH groups as reagents to provide additional -OH groups so that an intermediate {Si(OH) 4 } n is formed having superior reflow properties, allowing the annealing and reflow steps to occur at temperatures less than 750°C, which is the current processing temperature.
摘要:
In one aspect, the present invention discloses a transistor device (see e.g., Figure 3) that includes first and second source/drain regions 124a and 126 disposed in a semiconductor body 122 and separated by a channel region 128a. A dielectric layer 134a overlies the channel region 128a and a gate electrode 130a/132a overlies the dielectric layer 134a. In the preferred embodiment, the gate electrode includes a polysilicon layer 130a that extends a first lateral distance over the dielectric layer and a silicide layer 132a that extends a second lateral distance over the first polysilicon layer. In this example, the first lateral distance is greater than the second lateral distance.
摘要:
Electrical interconnection with studs is formed by depositing conductive stud material in contact holes in a dielectric layer; patterning the conductive stud material and removing a shallow portion of the dielectric layer surrounding the stud material; depositing a thin layer of dielectric material over the conductive stud and first dielectric layer; forming a trench in the dielectric layers and over the top of the stud material; and depositing conductive material in the trench.