摘要:
The process rules for manufacturing semiconductor devices such as MOSFET's are modified to provide dual work-function doping following the customary gate sidewall oxidation step, greatly reducing thermal budget and boron penetration concerns. The concern of thermal budget is further significantly reduced by a device structure which allows a reduced gap aspect ratio while maintaining low sheet resistance values. A reduced gap aspect ratio also relaxes the need for highly reflowable dielectric materials and also facilitates the use of angled source-drain (S-D) and halo implants. Also provided is a novel structure and process for producing a MOSFET channel, lateral doping profile which suppresses short channel effects while providing low S-D junction capacitance and leakage, as well as immunity to hot-carrier effects. This also affords the potential for reduction in the contact stud-to-gate conductor capacitance, because borderless contacts can be formed with an oxide gate sidewall spacer. As a result, the S-D junctions can be doped independently of the gate conductor doping, more easily allowing a variety of MOSFET structures.
摘要:
A process for forming a buried strap self-aligned to a deep storage trench. Spacers are formed on walls of a recess over a filled deep trench capacitor and a substrate. A plug is formed in a region between the spacers. Photoresist is deposited over the spacers, the plug, and material surrounding the spacers of the plug. The photoresist is patterned, thereby exposing portions of the plug, the spacers, and the surrounding material. The spacers in the surrounding material not covered by the photoresist are selectively etched, leaving a remaining portion of the spacers. The substrate and the portion of the filled deep trench exposed by the spacer removal are selectively etched. An isolation region is formed in a space created by etching of the spacers, surrounding material, substrate, and filled deep trench.
摘要:
A memory cell formed in a semiconductor body includes a vertical trench (14) with a polysilicon fill (22) as a storage capacitor and a field effect transistor having a source (43) formed in the sidewall of the trench, a drain (42) formed in the semiconductor body (10) and having a surface common with a top surface of the semiconductor body, and having a channel region that includes both vertical and horizontal portions and a polysilicon gate (30) that is in an upper portion of the trench. A process for fabrication provides an insulating oxide layer (24A) at the top of the polysilicon fill portion (22) that serves as the storage node and a dielectric layer (28) that was formed as part of the gate dielectric of the transistor.
摘要:
The process rules for manufacturing semiconductor devices such as MOSFET's are modified to provide dual work-function doping following the customary gate sidewall oxidation step, greatly reducing thermal budget and boron penetration concerns. The concern of thermal budget is further significantly reduced by a device structure which allows a reduced gap aspect ratio while maintaining low sheet resistance values. A reduced gap aspect ratio also relaxes the need for highly reflowable dielectric materials and also facilitates the use of angled source-drain (S-D) and halo implants. Also provided is a novel structure and process for producing a MOSFET channel, lateral doping profile which suppresses short channel effects while providing low S-D junction capacitance and leakage, as well as immunity to hot-carrier effects. This also affords the potential for reduction in the contact stud-to-gate conductor capacitance, because borderless contacts can be formed with an oxide gate sidewall spacer. As a result, the S-D junctions can be doped independently of the gate conductor doping, more easily allowing a variety of MOSFET structures.
摘要:
A semiconductor device including a substrate. At least one pair of deep trenches is arranged in the substrate. A collar lines at least a portion of a wall of each deep trench. A deep trench fill fills each deep trench. A buried strap extends completely across each deep trench over each deep trench fill and each collar. An isolation region is arranged between the deep trenches. A dielectric region overlies each buried strap in each deep trench.
摘要:
A process for forming a buried strap self-aligned to a deep storage trench. Spacers are formed on walls of a recess over a filled deep trench capacitor and a substrate. A plug is formed in a region between the spacers. Photoresist is deposited over the spacers, the plug, and material surrounding the spacers of the plug. The photoresist is patterned, thereby exposing portions of the plug, the spacers, and the surrounding material. The spacers in the surrounding material not covered by the photoresist are selectively etched, leaving a remaining portion of the spacers. The substrate and the portion of the filled deep trench exposed by the spacer removal are selectively etched. An isolation region is formed in a space created by etching of the spacers, surrounding material, substrate, and filled deep trench.
摘要:
A memory cell formed in a semiconductor body includes a vertical trench with a polysilicon fill as a storage capacitor and a field effect transistor having a source formed in the sidewall of the trench, a drain formed in the semiconductor body and having a surface common with a top surface of the semiconductor body, and having a channel region that includes both vertical and horizontal portions and a polysilicon gate that is in an upper portion of the trench. A process for fabrication provides an insulating oxide layer at the top of the polysilicon fill portion that serves as the storage node and the polysilicon fill portion that serves as the gate conductor.
摘要:
A trench capacitor with an epi layer (365) in the lower portion of the trench. The epi layer serves as the buried plate of the trench capacitor. A diffusion region (367) surrounds the lower portion of the trench to enhance the dopant concentration of the epi layer. The diffusion region is formed by, for example, gas phase doping, plasma doping, or plasma immersion ion implantation.
摘要:
A memory device in a substrate having a trench with side walls in the substrate includes bit line and word line conductors. Signal storage node has first electrode, second electrode formed within the trench, and node dielectric formed between the electrodes. Signal transfer device has: an annular signal transfer region with outer surface adjacent side walls of the trench, an inner surface, a first and a second end; first diffusion region coupling first end of the signal transfer region to second electrode of the signal storage node; second diffusion region coupling second end of signal transfer region to bit line conductor; a gate insulator coating the inner surface of signal transfer region; and a gate conductor coating the gate insulator and coupled to the word line. Conductive connecting member couples signal transfer region to reference voltage to reduce floating body effects.