摘要:
The present invention provides a process for producing a two-dimensional nanomaterial, the process comprising forming the two-dimensional nanomaterial on a surface of a substrate by CVD, wherein said surface is a liquid surface which comprises a molten eutectic compound. Substrates and substrate precursors for use in said process are also provided.
摘要:
The invention relates to graphene sheets and to a method for making the same in which a solution of graphene or graphite oxide is applied to a blue steel substrate and dried.
摘要:
Provided are a graphene sheet and a process of preparing the same. Particularly, a process of economically preparing a large-area graphene sheet having a desired thickness and a graphene sheet prepared by the process are provided.
摘要:
Systems and methods generally directed to enhancing the growth of carbon-based nanostructures are described. In some embodiments, electromagnetic radiation can be used to enhance carbon-based nanostructure growth.
摘要:
An economical method of preparing a large-sized graphene sheet having a desired thickness includes forming a film, the film comprising a graphitizing catalyst; heat-treating a gaseous carbon source in the presence of the graphitizing catalyst to form graphene; and cooling the graphene to form a graphene sheet. A graphene sheet prepared according to the disclosed method is also described.
摘要:
A novel carbon material is obtained by bending at least one carbon atom layer of graphite in at least one selected region along either, or both, of lines I and II in Fig. 1. The bending can be accomplished by scanningly picking the carbon atom layer(s) with a probe of an atomic force microscope or another scanning microscope. The obtained carbon material has at least one round bend having a width of 0.1-10 nm and at least one flap region having a triangular, rectangular or still differently polygonal shape in plan view. When the carbon atom layer(s) is bent with very small radii of curvature, a finely striped ridge-and-groove structure appears in the round bend. The physical properties of the obtained carbon material are uniquely determined by the direction(s) of bending, width of each bend, shape and size of each flap region and the stripe pitch of the ridge-and-groove structure.
摘要:
According to an aspect of the present inventive concept there is provided method for releasing a graphene layer from a template substrate on which the graphene layer is provided, the method comprising: subjecting the graphene layer and the template substrate to a water treatment by soaking the graphene layer and the template substrate in water such that water is intercalated between the template substrate and the graphene layer; and subjecting the graphene layer and the template substrate to a delamination process, thereby releasing the graphene layer from the template substrate.
摘要:
A graphene-reinforced polymer matrix composite comprising an essentially uniform distribution in a thermoplastic polymer of about 10% to about 50% of total composite weight of particles selected from graphite microp articles, single-layer graphene nanoparticles, multilayer graphene nanoparticles, and combinations thereof, where at least 50 wt % of the particles consist of single- and/or multi-layer graphene nanoparticles less than 50 nanometers thick along a c-axis direction. The graphene-reinforced polymer matrix is prepared by a method comprising (a) distributing graphite microparticles into a molten thermoplastic polymer phase comprising one or more matrix polymers; and (b) applying a succession of shear strain events to the molten polymer phase so that the matrix polymers exfoliate the graphite successively with each event until at least 50% of the graphite is exfoliated to form a distribution in the molten polymer phase of single- and multi-layer graphene nanoparticles less than 50 nanometers thick along a c-axis direction.