Abstract:
A quantum yield calculation method uses a quantum yield calculation program for a spectrophotofluorometer. When a quantum yield is calculated using a spectrophotofluorometer 1, a calibration processing unit executes the processing to calibrate a photon number A2 that is a photon number of the fluorescence in a blank measurement state based on a photon number A1 that is the photon number of an excitation light in the blank measurement state and a photon number B1 that is the photon number of an excitation light in the sample measurement state. A quantum yield calculation processing unit calculates a first quantum yield based on a background photon number A2' after a calibration in addition to the photon number A1 of the excitation light in the blank measurement state and the photon number B2 of the fluorescence in the sample measurement state.
Abstract:
The invention relates to a device (1) for the automated analysis of solids or fluids. Said device comprises a first station (5) having a metering unit (51) for filling at least one sample chamber (2) with a specified sample quantity, a second station (6) having at least one measuring device (61) for an analysis of the sample located in a sample chamber (2), and a third station (7) having an emptying and cleaning device (71, 72) for the at least one sample chamber (2). In addition, there is a conveyor device (3) for circulating conveyance of the at least one sample chamber (2) from one station to the next, until the first station (5) is reached again. According to the invention, the measurement device (61) at the second station (6) is a ball measuring system, through the interior of which the at least one sample chamber (2) can be guided.
Abstract:
A system for disinfecting a fluid, including: a flow cell including one or more inlet ports and one or more outlet ports, wherein the flow cell is configured to communicate a fluid containing a biological contaminant from the one or more inlet ports to the one or more outlet portions through an interior portion thereof; and one or more point radiation sources disposed about the flow cell, wherein the one or more point radiation sources are operable for delivering radiation to the biological contaminant; wherein an interior surface of the flow cell is operable for reflecting the radiation delivered to the biological contaminant by the one or more point radiation sources; and wherein the interior surface of the flow cell is operable for reflecting the radiation delivered to the biological contaminant by the one or more point radiation sources such that a radiation intensity is uniform throughout the interior portion of the flow cell. In one exemplary embodiment, the flow cell is an integrating sphere. Optionally, the system also includes a photocatalyzing material disposed on at least a portion of the interior surface of the flow cell.
Abstract:
A device including an optical measuring device and an optical system which can measure the light intensity of the scattered light from the sample and the spatial distribution of the scattered light and which is excellent in the sensitivity is provided. In the device, the image distortion is suppressed by providing such a structure that the light emitted from the first substance is reflected by the ellipsoidal mirror two or more even times before reaching the second substance. The image distortion is suppressed by arranging two ellipsoidal mirrors so that respective one focuses are set to a common focus while remaining other two focuses are arranged on one line so as to be opposite to each other across the common focus, setting the common focus to a blank, arranging a first substance on one of the focuses, and arranging a second substance on the other of the focuses.
Abstract:
A spectroscopic measurement apparatus 1 includes a light source 10, an integrator 20, a spectroscopic detector 40, and an analysis unit 50. The integrator 20 includes an internal space 21 in which a measurement object is disposed, a light input portion 22 for inputting light to the internal space 21, a light output portion 23 for outputting light from the internal space 21, a sample attachment portion 24 for attaching the measurement object, and a filter attachment portion 25 for attaching a filter unit. The filter unit has a transmission spectrum in which an attenuation rate for excitation light is larger than an attenuation rate for up-conversion light, and attenuates the light output from the light output portion 23. The analysis unit 50 analyzes luminous efficiency of the measurement object on the basis of the transmission spectrum data and the spectroscopic spectrum data acquired by the spectroscopic detector 40. Thus, the spectroscopic measurement apparatus and the spectroscopic measurement method that can easily measure generation efficiency of the up-conversion light can be provided.
Abstract:
The photo-coupled data acquisition system can have a container having a contour wall extending upwardly from a closed bottom, for containing a sample therein, a light emitter operable to emit diffused light into the container at an initial intensity, a photodetector operable to detect a reflected intensity of the diffused light, and a structure connected to the contour wall and holding the light emitter and the photodetector at a predetermined height above the bottom of the container and in an orientation facing inside the container, wherein during operation of the system, the initial light intensity is attenuated by the sample and the reflected intensity thereof can be correlated to an information value concerning a variable of interest of the sample.
Abstract:
A quantum-yield measurement device 1A measures a quantum yield of a sample S by irradiating a sample container 3 of a sample cell 2 for containing the sample S with pumping light L1 and detecting light to be measured L2 emitted from at least one of the sample S and sample container 3. The quantum-yield measurement device 1A comprises a dark box 5 for arranging therein the sample container 3; a light generation unit 6, having a light exit part 7 connected to the dark box 5, for generating the pumping light L1; a light detection unit 9, having a light entrance part 11 connected to the dark box 5, for detecting the light to be measured L2; an integrating sphere 14, arranged within the dark box 5, having a light entrance opening 15 for the pumping light L1 to enter and a light exit opening 16 for the light to be measured L2 to exit; and a movement mechanism 30 for moving the sample container 3, the light exit part 7, and the light entrance part 11 such that the sample container 3 attains each of a first state of being located inside of the integrating sphere 14 and a second state of being located outside of the integrating sphere 14 and causing the light exit part 7 and light entrance part 11 to oppose the light entrance opening 15 and light exit opening 16, respectively, in the first state.
Abstract:
There is provided a lighting device for capturing a facial image of a subject by an image capturing unit in plural different near-infrared regions of light including a housing in which a substantially spherical space is formed by a spherical surface, the housing accommodating an entire face part of the subject; at least two light sources arranged at positions bilaterally symmetrical with the subject on the spherical surface to emit the light to light the substantially spherical space; an image capturing unit capturing an image of the entire face part; a first filter installed in front of the light source to block ultraviolet rays and infrared rays from the emitted light; a second filter installed in front of the lens to adjust an amount of the light, and a third filter installed in front of the lens to perform band-pass filtering corresponding to the different near-infrared regions.
Abstract:
A method to change the color of hair. The method includes measuring an initial reflectance spectrum [Fig 1a (10)] of a sample of the hair and analyzing a contribution of a plurality of hair factors to the initial reflectance spectrum. The method also includes calculating a hair treatment based on another reflectance spectrum. A system to measure a reflectance spectrum of a sample includes an integrating sphere (12) having a sampling port (14) and an inner surface (16) and a window disposed (18) near the sampling port. The window is configured for being placed in close contact with the sample. The system also includes a light source (20) configured to project light onto the sample via the window and a light detector (22) configured to analyze light reflected from the inner surface (16) to produce the reflectance spectrum of the sample.