摘要:
The process for manufacturing a steel wire comprises: providing a steel wire; austenitizing said steel wire; patenting said steel wire; drawing said steel wire. The patenting of said steel wire comprises: slow cooling said steel wire to a first predetermined temperature; quick cooling the steel wire to a second predetermined temperature; keeping said steel wire at said second predetermined temperature. During the slow cooling, the steel wire substantially keeps its austenite structure unaltered; with the subsequent quick cooling, the steel wire is taken to the best conditions in order to start the phase change in which the austenite structure is transformed into a pearlite structure.
摘要:
The present invention relates to a tantalum wire for anode lead of tantalum capacitors, characterized in that the cross section of the tantalum wire is approximate rectangular or regular rectangular. The present invention also relates to a process for manufacturing the tantalum wire, comprising the steps of: providing feedstock tantalum wire; subjecting the feedstock tantalum wire to heat treatment; subjecting the heat treated tantalum wire to surface pretreatment to form an oxide membrane on the surface-pretreated tantalum wire; rolling the surface-pretreated tantalum wire by lubricating with lubricant oil to make the cross section of the rolled tantalum wire being approximate rectangular or regular rectangular; subjecting the tantalum wire to final annealing.
摘要:
The present invention is a copper-based bonding wire for use in a semiconductor element. The bonding wire of the present invention can be manufactured with an inexpensive material cost, and has a superior PCT reliability in a high-humidity/temperature environment. Further, the bonding wire of the present invention exhibits: a favorable TCT reliability through a thermal cycle test; a favorable press-bonded ball shape; a favorable wedge bondability; a favorable loop formability, and so on. Specifically, the bonding wire of the present invention is a copper alloy bonding wire for semiconductor manufactured by drawing a copper alloy containing 0.13 to 1.15% by mass of Pd and a remainder comprised of copper and unavoidable impurities.
摘要:
A filar includes an inner conductive core that is formed of a low-resistivity material such as silver having a resistivity of less than 20μΩ per centimeter. A conductive coil is provided around the core to form a filar. This coil is formed of a biocompatible alloy or super alloy having an ultimate tensile strength (UTS) of between 150 kilo pounds per square inch (ksi) and 280 ksi at room temperature. Examples of such alloys include CoCrMo, CoFeCrMo, and CoFeNiCrMo. In one specific embodiment, the alloy is MP35N (CoNiCrMo), which may be low-titanium ("low-ti") MP35N. One or more such filars may be included within a wire. This wire may be carried by an implantable medical apparatus such as a lead, lead extension, or catheter. The wire may electrically couple elements such as connector electrodes to conducting electrodes or sensors.
摘要:
A production method for a headline sonar cable (20, 120) that exhibits a high breaking-strength and lighter weight than a conventional steel headline sonar cable. Producing the headline sonar cable (20, 120) is characterized by the steps of : a. providing an elongatable internally-located conductive structure (34, 134) that is adapted for data signal transmission; and b. braiding a strength-member jacket layer (52) of polymeric material around the structure (34, 134) while ensuring that the structure (34,134) is slack when surrounded by the jacket layer (52) The structure (34, 134) of the cable (20, 120) retains conductivity upon stretching of the jacket layer (52) surrounding the structure (34,134) that lengthens the cable (20,120). For one embodiment of the method a conductor (20) wrapped around a rod (24) and enclosed within a sheath layer (32) forms the structure (34, 134). For another embodiment of the method a braided conductor (122) enclosed within a braided sheath (124) and a polymeric layer (132) forms the structure (34,134).
摘要:
A wire (2) for use as a feedstock in metal spraying and in welding contains two components (4, 6) formed from different metals, with the components being in face-to-face contact along a convoluted interface (8) that extends throughout the interior of the wire. This leaves the distribution of the two metals in generally uniform throughout the cross section of the wire. To produce the wire, two flat strips (22, 22 or 30, 32) of the different metals are provided, with the strips (22, 32) of the second component overlying the strips (20, 30) of the first component to form a laminate (24, 34). Then the laminate is deformed into a U-shaped configuration with the second strip being confined within the first strip. Next the ends of the U-shaped laminate are turned inwardly. The resulting configuration, which has a convoluted interface, is drawn through a die to reduce its cross-sectional size and to densify it.