Abstract:
Provided herein is a process for preparing a mixture including 5-(hydroxy-methyl)furfural (HMF) and one or more HMF esters of formula (I), the process including the following steps: (A-1) preparing or providing a starting mixture which includes one, two or more carbohydrate compounds and as the solvent or as a co-solvent for the carbohydrate compounds an amount of one or more carboxylic acid esters of formula (II); (A-2) subjecting the starting mixture to reaction conditions so that at least one of the one, two or more carbohydrate compounds reacts, and a fraction of the amount of one or more carboxylic acid esters of formula (II) is hydrolyzed, so that a mixture results that includes 5-(hydroxy-methyl)furfural and/or the one or more HMF esters of formula (I), one or more carboxylic acids of formula (III) and a remaining fraction of the amount of one or more carboxylic acid esters of formula (II).
Abstract:
The invention relates to a method for producing aluminates of general formula (I): A 1 B x Al 12-x O 19-y , wherein A means at least one element from the group consisting of Sr, Ba, and La, B means at least one element from the group consisting of Mn, Fe Co, Ni, Rh, Cu, and Zn, x means 0.05 to 1.0, and y means a value that is determined by the oxidation states of the other elements, comprising the following steps: (i) providing one or more solutions or suspensions containing precursor compounds of elements A and B and a precursor compound of aluminum in a solvent, (ii) converting the solutions or suspensions or the suspensions into an aerosol, (iii) introducing the aerosol into a directly or indirectly heated pyrolysis zone, (iv) performing the pyrolysis, and (v) separating the formed particles containing hexaaluminate of general formula (I) from the pyrolysis gas.
Abstract:
Catalytic process for preparing an α,β-ethylenically unsaturated carboxylic acid salt, wherein an alkene and carbon dioxide are reacted in the presence of a carboxylation catalyst and in the presence of a specific aryloxide to obtain the α,β-ethylenically unsaturated carboxylic acid salt, the carboxylation catalyst being a transition metal complex. The process allows for efficient preparation of α,β-ethylenically unsaturated carboxylic acid derivatives from CO2 and an alkene.
Abstract:
Catalytic process for preparing an α,β-ethylenically unsaturated carboxylic acid salt, comprising reacting an alkene and carbon dioxide in the presence of a carboxylation catalyst and releasing the α,β-ethylenically unsaturated carboxylic acid salt with a base, the carboxylation catalyst being a transition metal complex, which comprises a structurally constrained bidentate P,X ligand, wherein X is selected from the group consisting of P, N, O, and carbene, the P and X atom are separated by 2 to 4 bridging atoms, and wherein the bridging atoms are part of at least one 5- to 7-membered cyclic substructure. A further catalytic processes for preparing α-βethylenically unsaturated carboxylic acid derivatives from CO2 and an alkene is provided.
Abstract:
Catalytic process for preparing an α,β-ethylenically unsaturated carboxylic acid salt, wherein an alkene and carbon dioxide are reacted in the presence of a carboxylation catalyst and in the presence of a specific aryloxide to obtain the α,β-ethylenically unsaturated carboxylic acid salt, the carboxylation catalyst being a transition metal complex. The process allows for efficient preparation of α,β-ethylenically unsaturated carboxylic acid derivatives from CO2 and an alkene.
Abstract:
The present invention relates to a composite oxide comprising ceria, praseodymia and alumina, wherein the cerium : praseodymium molar ratio of the composite oxide is 84:16 or less, as well as to a method of preparing the composite oxide and to its use, in particular in a method of treating an exhaust gas stream.