Abstract:
The present invention provides a process for the preparation of a transistor on a substrate, which transistor comprises a layer, which layer comprises polyimide B, which process comprises the steps of i) forming a layer comprising photocurable polyimide A by applying photocur- able polyimide A on a layer of the transistor or on the substrate ii) irradiating the layer comprising photocurable polyimide A with light of a wavelength of > = 360 nm in order to form the layer comprising polyimide B, and a transistor obtainable by that process.
Abstract:
Disclosed is a method for preparing an organic electronic device, which contains one or more layers of a suitable functional material on a substrate, which process is characterized in that at least one interlayer of an amphiphilic protein is placed between adjacent layers of the functional material, or between the substrate and the adjacent layer of the functional material. The protein interlayer improves the adhesion of layers without negative impact on the device's performance.
Abstract:
The present invention relates to a method for producing a layer containing at least one semiconductive metal oxide on a substrate, comprising at least the following steps: (A) a porous layer comprising at least one semiconductive metal oxide is applied to a substrate, (B) the porous layer from step (A) is treated with a solution containing at least one precursor compound of the semiconductive metal oxide, so that the pores of the porous layer are at least partially filled with this solution, and (C) the layer obtained in step (B) is heat-treated in order to convert at least one precursor compound of the semiconductive metal oxide into the semiconductive metal oxide, wherein the at least one precursor compound of the at least one semiconductive metal oxide is selected in step (B) from the group comprising carboxylates of monocarboxylic acids, dicarboxylic acids or polycarboxylic acids with at least three carbon atoms or derivatives of monocarboxylic acids, dicarboxylic acids or polycarboxylic acids, alcoholates, hydroxides, semicarbazides, carbamates, hydroxamates, isocyanates, amidines, amidrazones, urea derivatives, hydroxylamines, oximes, oximates, urethanes, ammonia, amines, phosphines, ammonium compounds, nitrates, nitrides or azides of the relevant metal and mixtures thereof.
Abstract:
Disclosed are new semiconductor materials prepared from dimeric perylene compounds. Such compounds can exhibit high n-type carrier mobility and/or good current modulation characteristics. In addition, the compounds of the present teachings can possess certain processing advantages such as solution-processability and/or good stability at ambient conditions.
Abstract:
Poly(5,5'-bis(thiophen-2-yl)-benzo[2,1 -b;3,4-b']dithiophene) comprising as repeating units the group of the formula (I) wherein R is independently selected from a) a C 1-2O alkyl group, b) a C 2-20 alkenyl group, c) a C 2-20 alkynyl group, d) a C 1-20 alkoxy group, e) a -Y-C 3-10 cycloalkyl group, f) a -Y-C 6-14 aryl group, g) a -Y-3-12 membered cycloheteroalkyl group, or h) a -Y-5-14 membered het- eroaryl group, wherein each of the C 1-20 alkyl group, the C 2-20 alkenyl group, the C 2-20 alkynyl group, the C 3-10 cycloalkyl group, the C 6-14 aryl group, the 3-12 membered cycloheteroalkyl group, and the 5-14 membered heteroaryl group is optionally substituted with 1 -4 R 1 groups, R 1 is independently selected from a) a S(O) m -C 1-20 alkyl group, b) a S(O) m -OC 1-20 alkyl group, c) a S(O) m -OC 6-14 aryl group, d) a C(O)-OC 1-20 alkyl group, e) a C(O)-OC 6-14 aryl group, f) a C 1-20 alkyl group, g) a C 2-20 alkenyl group, h) a C 2-20 alkynyl group, i) a C 1-20 alkoxy group, j) a C 3-10 cycloalkyl group, k) a C 6-14 aryl group, I) a 3-12 membered cycloheteroalkyl group, or m) a 5-14 membered heteroaryl group, Y is independently selected from a divalent C 1-6 alkyl group, or a covalent bond; and m is independently selected from 0, 1, or 2, and having a number average molecular weight M n in the range of from 5,000 to 200,000 g/mol.
Abstract:
Dithienobenzodithiophenes of general formula (I) in which R1 to R6 are each independently selected from a) H, b) halogen, c) —CN, d) —NO2, e) —OH, f) a C1-20 alkyl group, g) a C2-20 alkenyl group, h) a C2-20 alkynyl group, i) a C1-20 alkoxy group, j) a C1-20 alkylthio group, k) a C1-20 haloalkyl group, I) a —Y—C3-10 cycloalkyl group, m) a —Y—C6-14 aryl group, n) a —Y-3-12 membered cyclo-heteroalkyl group, or o) a —Y-5-14 membered heteroaryl group, wherein each of the C1-20 alkyl group, the C2-20 alkenyl group, the C2-20 alkynyl group, the C3-10 cycloalkyl group, the C6-14 aryl group, the 3-12 membered cyc-loheteroalkyl group, and the 5-14 membered heteroaryl group is optionally substituted with 1-4 R7 groups, wherein R1 and R3 and R2 and R4 may also together form an aliphatic cyclic moiety, Y is independently selected from divalent a C1-6 alkyl group, a divalent C1-6 haloalkyl group, or a covalent bond; and m is independently selected from 0, 1, or 2. The invention also relates to the use of the dithienobenzodithiophenes according to any of claims 1 to 4 as semiconductors or charge transport materials, as thin-film transistors (TFTs), or in semiconductor components for organic light-emitting diodes (OLEDs), for photovoltaic components or in sensors, as an electrode material in batteries, as optical waveguides or for electrophotography applications.
Abstract:
A method for producing an organic semiconductor device (110) having at least one organic semiconducting material (122) and at least two electrodes (114) adapted to support an electric charge carrier transport through the organic semiconducting material (122) is disclosed. The organic semiconducting material (122) intrinsically has ambipolar semiconducting properties. The method comprises at least one step of generating at least one intermediate layer (120) which at least partially is interposed between the organic semiconducting material (122) and at least one of the electrodes (114) of the organic semiconductor device (110). The intermediate layer (120) comprises at least one thiol compound having the general formula HS-R, wherein R is an organic residue. The thiol compound has an electric dipole moment pointing away from the SH-group of the thiol compound. The electric dipole moment has at least the same magnitude as the electric dipole moment in 4-Phenylthiophenol. By the intermediate layer (120) an ambipolar charge carrier transport between the electrodes (114) is suppressed in favor of a unipolar charge carrier transport.