摘要:
Yeast cells are mutagenized to obtain desirable mutants. Mutagenesis is mediated by a defective mismatch repair system which can be enhanced using conventional exogenously applied mutagens. Yeast cells with the defective mismatch repair system are hypermutable, but after selection of desired mutant yeast strains, they can be rendered genetically stable by restoring the mismatch repair system to proper functionality.
摘要:
Detection of mutations associated with hereditary diseases is complicated by the diploid nature of mammalian cells. Mutations present in one allele are often masked by the wild-type sequence of the other allele. Individual alleles can be isolated from every chromosome within somatic cell hybrids generated from a single fusion. Nucleic acids from the hybrids can be analyzed for mutations in an unambiguous manner. This approach was used to detect two cancer-causing mutations that had previously defied genetic diagnosis. One of the families studied, Warthin Family G, was the first kindred with a hereditary colon cancer syndrome described in the biomedical literature.
摘要:
Genotyping can be accomplished by analysis of short, defined DNA segments using electrospray ionization mass spectrometry. The DNA segments are produced using specially designed primers to amplify a cDNA or genomic DNA template. The primers contain a recognition site for a restriction endonuclease. The amplification products are digested with the restriction endonuclease. Single nucleotide polymorphisms can be detected rapidly and reliably.
摘要:
Yeast genes which are differentially expressed during the cell cycle are described. They can be used to study, affect, and monitor the cell cycle of a eukaryotic cell. They can be used to obtain human homologs involved in cell cycle regulation. They can be used to identify antifungal agents. They can be formed into arrays on solid supports for interrogation of a cell's transcriptome under various conditions.
摘要:
The identification of mutations that are present in a small fraction of DNA templates is essential for progress in several areas of biomedical research. Though massively parallel sequencing instruments are in principle well-suited to this task, the error rates in such instruments are generally too high to allow confident identification of rare variants. We here describe an approach that can substantially increase the sensitivity of massively parallel sequencing instruments for this purpose. One example of this approach, called "Safe-SeqS" for (Safe-Sequencing System) includes (i) assignment of a unique identifier (UID) to each template molecule; (ii) amplification of each uniquely tagged template molecule to create UID-families; and (iii) redundant sequencing of the amplification products. PCR fragments with the same UID are truly mutant ("super-mutants") if =95% of them contain the identical mutation. We illustrate the utility of this approach for determining the fidelity of a polymerase, the accuracy of oligonucleotides synthesized in vitro, and the prevalence of mutations in the nuclear and mitochondrial genomes of normal cells.
摘要:
As cell-free DNA from brain and spinal cord tumors cannot usually be detected in the blood, we assessed the cerebrospinal fluid (CSF) that bathes the CNS for tumor DNA, here termed CSF-tDNA. The results suggest that CSF-tDNA could be useful for the management of patients with primary tumors of the brain or spinal cord.
摘要:
We found mutations of the R132 residue of isocitrate dehydrogenase 1 (IDH1) in the majority of grade II and III astrocytomas and oligodendrogliomas as well as in glioblastomas that develop from these lower grade lesions. Those tumors without mutations in IDH1 often had mutations at the analogous R172 residue of the closely related IDH2 gene. These findings have important implications for the pathogenesis and diagnosis of malignant gliomas.
摘要:
We determined the sequence of ATRX and DAXX in 447 cancers from various sites. We found mutations most commonly in pediatric glioblastoma multiformae (GBM) (11.1%), adult GBM (6.5%), oligodendrogliomas (7.7%) and medulloblastomas (1.5%); and showed that Alternative Lengthening of Telomeres (ALT), a telomerase-independent telomere maintenance mechanism found in cancers that have not activated telomerase, perfectly correlated with somatic mutations of either gene. In contrast, neuroblastomas, and adenocarcinomas of the ovary, breast, and pancreas were negative for mutations in ATRX and DAXX. Alterations in ATRX or DAXX define a specific molecular pathway that is closely associated with an alternative telomere maintenance function in human cancers.