摘要:
Provided herein are compositions and methods for the heterologous production of acetyl-CoA-derived isoprenoids in a host cell. In some embodiments, the host cell is genetically modified to comprise a heterologous nucleotide sequence encoding an acetaldehyde dehydrogenase, acetylating (ADA, E.C. 1.2.1.10) and an MEV pathway comprising an NADH-using HMG-CoA reductase. In some embodiments, the host cell is genetically modified to comprise a heterologous nucleotide sequence encoding an ADA and an MEV pathway comprising an acetoacetyl-CoA synthase. In some embodiments, the genetically modified host cell further comprises one or more heterologous nucleotide sequences encoding a phosphoketolase and a phosphotransacetylase. In some embodiments, the genetically modified host cell further comprises a functional disruption of the native PDH-bypass. The compositions and methods described herein provide an energy-efficient yet redox balanced route for the heterologous production of acetyl-CoA-derived isoprenoids.
摘要:
Systems and methods for employing chemoautotrophic micro-organisms to capture carbon from industrial waste are provided. An exemplary system comprises an industrial source, such as a cement plant, and a bioreactor including the micro-organisms. The bioreactor is fed the waste stream from the source, which provides carbon to the micro-organisms, and is also fed hydrogen, from which the micro-organisms derive their energy. Additional or alternative carbon can be provided from a gasifier fed an organic feedstock. The carbon provided to the micro-organisms is converted into chemical products which can be recovered from the bioreactor. Hydrogen can be produced by electrolysis using electricity generated by a renewable energy source.
摘要:
The present disclosure provides novel methods and compositions for improved production processes of algae cell components. In particular the present disclosure relates to methods for improving the extractability of algae cellular compositions.
摘要:
The present invention relates to a simple and economic method of extracting a crystalline Carotenoid compound, such as Beta-carotene, Lycopene, with a purity of at least 99%. The present invention further describes a process to prepare such a highly pure crystalline Carotenoid compound from microbial biomass, using an Anti-purity compound removal process followed by a mono-solvent extraction method. Further the process describes value addition of the co-products recovered during the extraction process thus resulting in a highly economical industrial method for the production of such high purity crystalline Carotenoids compound.
摘要:
Yeast strains capable of increased prenyl phosphate production are provided, enabling increased terpenoid molecule production. Heterologous yeast strains with high prenyl phosphate availability are prepared using one or both of two different strategies for increasing the availability of prenyl phosphates for terpenoid production. First, by co- expressing multiple mevalonate pathway gene analogs, a novel heterologous combination of genes results, some of which increases the inherent availability of prenyl phosphates in yeast. Second, by expressing the non-endogenous enzyme ATP citrate lysase (ACL), a buildup of high cytosolic concentration of acetyl-CoA is produced in the cytosol of S. cerevisiae.
摘要:
An object of the present invention is to provide a method for microbiologically producing zeaxanthin of high concentration at low cost while suppressing production of gluconic acid. Specifically, the present invention relates to a method for producing carotenoids containing zeaxanthin, the method comprising a step of culturing a bacterium producing carotenoids containing zeaxanthin in a medium containing biotin, wherein a concentration of produced gluconic acid and a concentration of produced zeaxanthin in a culture liquid after the end of culture are lower and higher, respectively, than those in a culture liquid after the end of culture in a biotin-free medium.