摘要:
Compositions and methods for modifying genomic DNA sequences are provided. The methods produce double-stranded breaks (DSBs) at pre-determined target sites in a genomic DNA sequence, resulting in mutation, insertion, and/or deletion of DNA sequences at the target site(s) in a genome. Compositions comprise DNA constructs comprising nucleotide sequences that encode a Cms1 protein operably linked to a promoter that is operable in the cells of interest. The DNA constructs can be used to direct the modification of genomic DNA at pre-determined genomic loci. Methods to use these DNA constructs to modify genomic DNA sequences are described herein. Additionally, compositions and methods for modulating the expression of genes are provided. Compositions comprise DNA constructs comprising a promoter that is operable in the cells of interest operably linked to nucleotide sequences that encode a mutated Cms1 protein with an abolished ability to produce DSBs, optionally linked to a domain that regulates transcriptional activity. The methods can be used to up- or down-regulate the expression of genes at predetermined genomic loci.
摘要:
The present invention relates to a tomato plant which carries at least one QTL in its genome that leads to its fruits comprising higher levels of anthocyanins when compared to fruits produced by a tomato plant not carrying said QTL in its genome, wherein said fruits are not purple at the red-ripe harvest stage. A tomato plant of the invention may also comprise all QTLs, each either in homozygous or heterozygous form. The invention further relates to progeny of the plant, propagation material for the plant and to markers for identifying the QTLs and their use.
摘要:
Mutant photosynthetic microorganisms having reduced chlorophyll and increased photosynthetic efficiency are provided. The mutants have a locked in high light-acclimated phenotype, in which many of the photosynthetic parameters characteristic of high light acclimated wild type cells are found in the LIHLA mutants when acclimated to low light, such as reduced chlorophyll, reduced NPQ, higher qP, higher Ek, higher Pmax per unit chlorophyll with little to no reduction in Pmax per cell, and higher rates of electron transport through photosystem II over a wide range of light intensities. Provided herein are constructs for attenuating or disrupting genes are provided for generating mutants having the LIHLA phenotype. Also provided are methods of culturing LIHLA mutants for the production of biomass or other products.
摘要:
The present invention relates to a new carotenoid dioxygenase and methods for the biological production in microor-ganisms and plants of compounds with high added value derived from saffron.
摘要:
Mutant photosynthetic microorganisms having reduced chlorophyll and increased photosynthetic efficiency are provided. The mutants have a locked in high light-acclimated phenotype, in which many of the photosynthetic parameters characteristic of high light acclimated wild type cells are found in the LIHLA mutants when acclimated to low light, such as reduced chlorophyll, reduced NPQ, higher qP, higher Ek, higher Pmax per unit chlorophyll with little to no reduction in Pmax per cell, and higher rates of electron transport through photosystem II over a wide range of light intensities. Provided herein are constructs for attenuating or disrupting genes are provided for generating mutants having the LIHLA phenotype. Also provided are methods of culturing LIHLA mutants for the production of biomass or other products.
摘要:
Disclosed are: a method for producing a chrysanthemum plant having delphinidin-containing petals using a transcriptional regulatory region for a chrysanthemum-derived flavanone 3-hydroxylase (F3H) gene; and a chrysanthemum plant, a progeny or a vegetative proliferation product of the plant, or a part or a tissue of the plant, the progeny or the vegetative proliferation product, and particularly a petal or a cut flower of the plant. In the method for producing a chrysanthemum plant having delphinidin-containing petals, a flavonoid 3',5'-hydroxylase (F3'5'H) is caused to be expressed in a chrysanthemum plant using a transcriptional regulatory region for a chrysanthemum-derived flavanone 3-hydroxylase (F3H) gene.
摘要:
The present invention relates to compositions and methods for improving the abiotic stress tolerance of plants. Plants and plant parts identified, selected and/or produced using compositions and methods of the present invention are also provided.
摘要:
The invention provides compositions and methods related to selective inhibition of PPO11 and use for improving shelf life of a plant or parts thereof. In accordance with the invention, for example, compositions for topical application to a plant or part thereof, are provided that can reduce browning of the plant or part thereof to extend shelf life.
摘要:
The present invention provides novel protein and gene related to flavonoid O-methyltransferase (FOMT) and their uses therefore. The said protein having an amino acid sequence shown in SEQ ID NO: 3, or an amino acid sequence having deletion, substitution or insertion of one or plural amino acids in said amino acid sequence. The said gene comprising the nucleotide sequence shown in SEQ ID NO: 1, or a gene which hybridizes with said gene under stringent conditions and encodes a protein, which has anthocyanin 3'-O-methyltransferase or 3',5'-O-methyltrasnferase activity. The present invention also provides a method for obtaining the transgenic plant used the above-mentioned gene.