Abstract:
A method of scanning a surface of an object using a particle beam comprises: determining a surface portion of the surface of the object, wherein the surface portion is to be scanned; determining initial positions of a set of raster points within the surface portion; changing the positions of at least some raster points of the set of raster points; and then scanning the surface portion by directing the particle beam to the positions of the raster points.
Abstract:
The invention relates to a Method of protecting a direct electron detector (151) in a TEM. The invention involves predicting the current density on the detector before setting new beam parameters, such as changes to the excitation of condenser lenses (104), projector lenses (106) and/or beam energy. The prediction is made using an optical model or a Look-Up-Table. When the predicted exposure of the detector is less than a predetermined value, the desired changes are made, otherwise a warning message is generated and changes to the settings are postponed.
Abstract:
A method and an apparatus are for three-dimensional tomographic image generation in a scanning electron microscope system. At least two longitudinal marks are provided on the top surface of the sample which include an angle therebetween. In consecutive image recordings, the positions of these marks are determined and are used to quantify the slice thickness removed between consecutive image recordings.
Abstract:
A system and method for mitigating contamination in an ion implantation system is provided. The system comprises an ion source (200), a power supply (216) operable to supply power to a filament (214) and mirror electrode (218) of the ion source, a workpiece handling system, and a controller (228), wherein the ion source is selectively tunable via the controller to provide rapid control of a formation of an ion beam. The controller is operable to selectively rapidly control power to the ion source, therein modulating a power of the ion beam between an implantation power and a minimal power in less than approximately 20 microseconds based, at least in part, to a signal associated with a workpiece position. Control of the ion source therefore mitigates particle contamination in the ion implantation system by minimizing an amount of time at which the ion beam is at the implantation current.