Abstract:
Cations that can precipitate from an aqueous composition to produce scaling are sequestered by adding a multi-dentate ligand to the aqueous composition. The multi-dentate ligand bonds with the cation to form a non-scaling ionic complex; and the aqueous solution with the ionic complex is used in a process that produces substantially pure water from the aqueous composition, where the cation, absent formation of the ionic complex, is subject to scaling. The pH of the aqueous composition (or a brine including components of the aqueous composition) is then reduced to release the cation from the multi-dentate ligand; and the multi-dentate ligand, after the cation is released, is then reused in a predominantly closed loop.
Abstract:
According to one embodiment of the present invention, a forward osmosis-type fresh water composite system includes: a fuel cell device that has a cathode electrode in which carbon dioxide supplied from a plant is converted into carbonate ion (CO 3 2- ) and an anode electrode that produces electric energy by reacting the carbonate ion (CO 3 2- ) with hydrogen and discharges the carbon dioxide; and a carbon dioxide collection unit that reacts the carbon dioxide supplied from the fuel cell device and water supplied from the outside with ammonia separated from a draw solution separation unit so as to produce a high-concentration draw solution and then supplies the high-concentration draw solution to a forward osmosis separation device.
Abstract:
The present disclosure is directed at an apparatus, method and plant for desalinating saltwater and contaminated saltwater. The apparatus comprises a stack and a manifolding assembly. The stack comprises a product chamber, a first and second concentrate chamber, an anion exchange membrane forming a boundary between the first concentrate chamber and the product chamber and a cation exchange membrane forming a boundary between the second concentrate chamber and the product chamber. The manifolding assembly comprises product and concentrate manifolding fluidly coupled to the product and concentrate chambers respectively, to convey a saltwater being desalinated to and away from the product chamber, and a concentrate to and away from the concentrate chambers. The stack may include a diluent chamber and adjacent anion or cation exchange membranes between the product chamber, diluent chamber and concentrate chamber to respectively convey anions or cations across multiple chambers. The stack may also contain a rinse chamber bounded by an anion exchange membrane to guard the stack electrodes from scaling cations. A cleaning system for cleaning the stack is also disclosed.
Abstract:
Provided is an electrodeionization apparatus for producing deionized water, capable of removing or reducing a biased flow of electric current in a deionization chamber. In the electrodeionization apparatus for producing deionized water, at least one deionization treatment unit including the deionization chamber and a pair of concentration chambers adjacent to both sides of the deionization chamber is disposed between a cathode and an anode. In the deionization chamber, anion exchanger layers and cation exchanger layers are stacked in an order in which a last ion exchanger layer through which water to be treated passes is an anion exchanger layer. A bipolar membrane is formed on the cathode side of the anion exchanger layer in the deionization chamber. The anion exchange membrane of the bipolar membrane is in contact with the anion exchanger layer.
Abstract:
A water purifying filter and method for fabricating the same are disclosed. The water purifying filter includes a support substrate, a pattern formed on the support substrate to have at least one hole, membrane protein of an aquaporin group coated on the pattern and a protective layer formed on polymer pattern having the membrane protein coated thereon.
Abstract:
An energy exchange chamber is used for exchanging pressure energy between concentrated seawater discharged from a reverse-osmosis membrane-separation apparatus and a part of seawater to be treated by the reverse-osmosis membrane separation apparatus in a seawater desalination system. The energy exchange chamber includes a concentrated seawater distributor communicating with a concentrated seawater port and configured to distribute a flow of the concentrated seawater flowing therein all over a horizontal plane of an interior of a chamber, and a seawater distributor communicating with a seawater port and configured to distribute a flow of the seawater flowing therein all over a horizontal plane of the interior of the chamber. The concentrated seawater and the seawater introduced into the chamber are brought into direct contact with each other over the horizontal plane of the interior of the chamber to exchange pressure energy between the concentrated seawater and the seawater.
Abstract:
The present invention provides a central core element for separator assemblies useful in the purification of fluids, for example separator assemblies useful for the desalination of seawater. The central core element provided by the present invention comprises at least two porous exhaust conduits wherein each porous exhaust conduit comprises an exhaust channel and one or more openings which allow fluid communication between an exterior surface of the porous exhaust conduit and the exhaust channel. The central core element defines a cavity into which may be disposed a first portion of a membrane stack assembly. In the preparation of a separator assembly comprising the central core element provided by the present invention, a second portion of the membrane stack assembly forms a multilayer membrane assembly disposed around the central core element. Also provided are central core elements for salt separator assemblies and spiral flow reverse osmosis devices.
Abstract:
A system and method for switching between flows of water solutions passed in groups of blocks of membrane pressure vessels arranged in parallel in a tapered flow system, wherein the system comprises a system inlet feed line, a system outlet flow line, high pressure booster pumps configured to provide a high pressure feed stream to the system; blocks of membrane pressure vessels arrayed in parallel, and a first and second bypass line each parallel to said blocks.
Abstract:
Disclosed is an improved method for the remineralization of process water in a desalination system. The method sequesters carbon dioxide gas (CO2) from seawater or concentrate (brine) of desalination process via a gas transfer membrane. The sequestered carbon dioxide gas (CO2) is thereafter used in the production of soluble calcium bicarbonate (Ca(HCO3)2). The calcium bicarbonate (Ca(HCO3)2) adds hardness and alkalinity to the resulting process water.