Abstract:
Le procédé permet de préparer un catalyseur, destiné à être mis en oeuvre dans une réaction Fischer-Tropsch. On oxyde dans un réacteur I un support de catalyseur imprégné avec une solution de nitrate de cobalt à une température de calcination comprise entre 400°C et 450°C pour produire un précurseur de catalyseur comportant des oxydes de cobalt. Puis, on met en contact le précurseur de catalyseur dans le réacteur de réduction A avec le gaz réducteur riche en hydrogène et pauvre en eau par circulation du flux de gaz réducteur, de manière à réduire les oxydes de cobalt en Co et à produire de l'eau. Ensuite, on réduit la teneur en eau à 200 ppmvol du flux de gaz réducteur chargé en eau récupéré à la sortie du réacteur A. Et, on recycle au moins une partie du flux de gaz réducteur dans le réacteur A. Dans le procédé, on maintient le gaz réducteur à une teneur en eau inférieure à 10 000 ppmvol dans le réacteur A.
Abstract:
The disclosure provides an improved endothermic hydrocarbon conversion process that comprises reacting a hydrocarbon with a multi-component catalyst bed, and regenerating the catalyst bed with air, where the air used in regeneration step and hydrocarbon are at low air to hydrocarbon ratios and optionally at near-atmospheric pressures.
Abstract:
The invention provides a method of preparing a metal / metal oxide material. In one aspect, a nanostructure is provided, the nanostructure comprising a first metal to form the metal oxide, and a reaction surface with a reducing agent on the reaction surface. A second metal is deposited onto the reaction surface to form a bimetallic product. The bimetallic product is calcined to form the metal / metal oxide material.
Abstract:
Sulfur-resistant synergized platinum group metals (SPGM) catalysts suitable for diesel oxidation are disclosed. Catalytic layers of SPGM catalyst samples contain a washcoat layer substantially free of PGM material (ZPGM). The SPGM catalyst includes a washcoat layer comprising YMn 2 O 5 (pseudobrookite) and an overcoat layer including a Pt/Pd composition with a total PGM loading of up to 176.6 g/m 3 (5.0 g/ft 3 ). Resistance to sulfur poisoning and catalytic stability under sulfation conditions with high NO oxidation, and HC and CO conversion performances are observed.
Abstract translation:适合于柴油机氧化耐硫协同铂族金属(SPGM)催化剂是游离缺失盘。 SPGM催化剂样品的催化剂层包含修补基面涂层基本不含PGM材料(ZPGM)的。 该催化剂SPGM包括修补基面涂层包含Y M N 2 O 5(pseudobrookites),并在保护层包括具有高达176.6克/米3(5.0克/立方英尺)共PGM负载的Pt /钯的组合物。 耐硫中毒和催化稳定性高的NO氧化,和HC和CO转化的性能硫酸化的条件下观察到。
Abstract:
The structure (102, 302, 402, 502, 602, 702, 802, 902) comprises one or more segments (404, 604) having axially oriented substantially parallel fluid flow passages (110, 304, 410, 510, 610,710,810,910); cell walls (112, 312, 412, 512, 612, 712, 812, 912) between adjacent fluid flow passages, each cell wall having at least two opposite cell wall surfaces, and comprising (in or on a cell wall surface) at least one active compound that can interact with a fluid contained within or passed through the passages; and a plurality of axially continuous, axially oriented, filaments (114, 314, 414, 514, 614,714, 814,914) that are thermally and/or electrically conductive for transfer of thermal energy from the active compound. According to the invention the filaments are embedded within the cell walls in direct contact with the active compound on or in the cell wall surface, and can transfer thermal energy between the active compound and the conductive filaments.
Abstract:
The present invention provides an ammonia oxidation/decomposition catalyst including a support composed of an oxidizable and reducible metal oxide and a catalytically active metal supported thereon. By bringing the ammonia oxidation/decomposition catalyst including a support composed of an oxidizable and reducible metal oxide and a catalytically active metal supported thereon into contact with ammonia and air at ordinary temperature, the support in a reduced state reacts with oxygen to generate oxidation heat, and the temperature of the catalyst layer is increased in a moment. Once the temperature of the catalyst layer is increased to a temperature at which ammonia and oxygen react with each other, the ammonia oxidation reaction proceeds autonomously after that. The heat generated in this exothermic reaction is used in the course of decomposing ammonia in the presence of the catalytically active metal, thereby producing hydrogen. According to this, the need for pre-heating by an electric heater or the like can be eliminated, and the production costs of hydrogen can be reduced.
Abstract:
A catalyst composition comprises a self-bound zeolite and a Group 12 transition metal selected from the group consisting of Zn, Cd, or a combination thereof, the zeolite having a silicon to aluminum ratio of at least about 10, the catalyst composition having a micropore surface area of at least about 340 m2/g, a molar ratio of Group 12 transition metal to aluminum of about 0.1 to about 1.3, and at least one of: (a) a mesoporosity of greater than about 20 m2/g; (b) a diffusivity for 2,2-dimethylbutane of greater than about 1×10−2 sec−1 when measured at a temperature of about 120° C. and a 2,2-dimethylbutane pressure of about 60 torr (about 8 kPa).
Abstract:
A catalyst composition comprises a self-bound zeolite and a Group 12 transition metal selected from the group consisting of Zn, Cd, or a combination thereof, the zeolite having a silicon to aluminum ratio of at least about 10, the catalyst composition having a micropore surface area of at least about 340 m2/g, a molar ratio of Group 12 transition metal to aluminum of about 0.1 to about 1.3, and at least one of: (a) a mesoporosity of greater than about 20 m2/g; (b) a diffusivity for 2,2-dimethylbutane of greater than about 1×10−2 sec−1 when measured at a temperature of about 120° C. and a 2,2-dimethylbutane pressure of about 60 torr (about 8 kPa).
Abstract:
A catalyst composition comprises a self-bound zeolite and a Group 12 transition metal selected from the group consisting of Zn, Cd, or a combination thereof, the zeolite having a silicon to aluminum ratio of at least about 10, the catalyst composition having a micropore surface area of at least about 340 m2/g, a molar ratio of Group 12 transition metal to aluminum of about 0.1 to about 1.3, and at least one of: (a) a mesoporosity of greater than about 20 m2/g; (b) a diffusivity for 2,2-dimethylbutane of greater than about 1×10−2 sec−1 when measured at a temperature of about 120° C. and a 2,2-dimethylbutane pressure of about 60 torr (about 8 kPa).