Abstract:
A process for producing combustible product from an organic or biomass feedstock, the process comprising: mixing the feedstock with an alkaline material to give an alkaline aqueous mixture; reacting the mixture under subcritical conditions at a temperature in the range of about 280°C to about 320°C and a pressure of about 6.6 MPato about 11.6 MPa (65 bar gauge to about 115 bar gauge); and removing at least some of the water to leave a combustible product, which may be used to form an aqueous slurry, suspension or emulsion and combusted in a suitable engine.
Abstract:
Liquid bio-fuels and processes for their production are provided. The liquid bio-fuels can have improved stability, less corrosiveness, and/or an improved heating value.
Abstract:
Described herein are methods for producing branched alkanes and branched alkenes from the pyrolysis of radical precursors in the presence of one or more alkenes. The branched alkanes and branched alkene have numerous applications as fuels, plat form chemicals, and solvents.
Abstract:
Compositions and methods for producing hydrocarbons such as aldehydes, alkanes, and alkenes are described herein. Certain hydrocarbons can be used in biofuels.
Abstract:
A gasoline fuel formulation which contains 60% v/v or more of a combination of (a) a biologically-derived alcohol and (b) a mixture of C4 to C12 hydrocarbon fuel components, all of which hydrocarbon fuel components have been derived, whether directly or indirectly, from catalytic conversion of a biologically-derived oxygenate component, wherein the concentration of the alcohol (a) in the formulation is from 0.1 to 30% v/v.
Abstract:
Oils from plants and animal fats are hydrolyzed to fatty acids for a Kolbe reaction. The invention relates to a high productivity Kolbe reaction process for electrochemically decarboxylating C4-C28 fatty acids derived from sources selected based on their saturated and unsaturated fatty acid content in order to lower anodic passivation voltage during synthesis of C6-C54 hydrocarbons. The C6-C54 hydrocarbons may undergo olefin metathesis and/or hydroisomerization reaction processes to synthesize heavy fuel oil, diesel fuel, kerosene fuel, lubricant base oil, and linear alpha olefin products useful as precursors for polymers, detergents, and other fine chemicals.
Abstract:
The present disclosure relates to bioengineering approaches for producing biofuel and, in particular, to the use of a C 1 metabolizing microorganism reactor system for converting C 1 substrates, such as methane or methanol, into biomass and subsequently into biofuels, bioplastics, or the like.
Abstract:
A process is described for producing hydrocarbon fractions which can be used as diesel fuel or as components of diesel fuel, starting from a mixture of a biological origin containing esters of fatty acids possibly with amounts of free fatty acids, which comprises the following steps: 1) hydrodeoxygenation of the mixture of a biological origin; 2) hydroisomerization of the mixture resulting from step (1), after possible purification treatment, said hydroisomerization being effected in the presence of a catalytic system which comprises: a) a carrier of acid nature comprising a completely amorphous micro-mesoporous silico-alumina having a SiO2/Al2O3 molar ratio ranging from 30 to 500, a surface area greater than 500 m2/g, a pore volume ranging from 0.3 to 1.3 ml/g, an average pore diameter lower than 40 Å, b) a metallic component containing one or more metals of group VIII, possibly mixed with one or more metals of group VIB.
Abstract:
The present disclosure relates to thermal conversion of ketoacids, including methods for increasing the molecular weight of ketoacids, the method including the steps of providing in a reactor a feedstock comprising at least one ketoacid. The feedstock is then subjected to one or more C-C-coupling reaction(s) by heating the feedstock to temperature of 200-500° C. in the absence of a catalyst.
Abstract:
The present invention provides a composition comprising 10-40 mass% of C 8-30 linear alkanes, 0.1-15 mass% of C 7-20 aromatic hydrocarbons, at least 90 mass% of which are monoaromatic, and no more than 1 mass% in total of oxygen-containing compounds; wherein the total amount of C 8-30 alkanes in the composition is 50-95 mass%, and the total amount of C 8-30 alkanes, C 7-20 aromatic hydrocarbons and C 8-30 cycloalkanes is at least 95 mass%; and wherein the amounts are based on the mass of the composition. Also provided is a method for producing the composition comprising the step of hydroprocessing a biological feedstock using a catalyst and the step of fractionating the product of the hydroprocessing step.