Abstract:
By means of the invention, nanoparticles, which can be pure metal, alloys of two or more metals, a mixture of agglomerates, or particles possessing a shell structure, are manufactured in a gas phase. Due to the low temperature of the gas exiting from the apparatus, metallic nanoparticles can also be mixed with temperature-sensitive materials, such as polymers. The method is economical and is suitable for industrial-scale production. A first embodiment of the invention is the manufacture of metallic nanoparticles for ink used in printed electronics.
Abstract:
A porous and permeable composite for treatment of contaminated fluids, said composite including a body of iron particles and 0.01-10% by weight of at least one functional ingredient distributed and locked in the pores and cavities of the iron body. Also, methods of making a permeable porous composite for water treatment. Also, use of a permeable porous composite for reducing the content of contaminants in a fluid, wherein said fluid is allowed to pass through the permeable composite.
Abstract:
The method for producing, processing, sintering, pressing or extruding thermoelectric materials under heat treatment using an inert gas, or at a reduced pressure at temperatures ranging from 100 to 900 °C is characterised in that the producing, processing, sintering, pressing or extruding is carried out in the presence of oxygen scavengers which form thermodynamically stable oxides under the producing, processing, sintering, pressing or extrusion conditions in the presence of free oxygen and thus keep free oxygen away from the thermoelectric material.
Abstract:
High aspect-ratio metal members such as a nanopillar, a nanorod, and the like, and a method of producing the same. The present invention provides high aspect-ratio metal members such as a nanopillar or a nanorod, and a method of producing the same, such metal members being produced by filling the micropores of an anodized film having a degree of ordering of 70% or more with a metal having an aspect ratio of 5 or more, followed by baking in inert gas atmosphere or in a vacuum at 300°C or more to 1000°C or less to improve crystallinity.
Abstract:
An atomised pre-alloyed iron-based powder which comprises by weight-% 10,5-30 Cr 3-15 Al 5-20 Cu max 0,1 C max 0,2 N max 3.0 Mn max 2.5 Si max 3.0 Mo balance essentially only iron and unavoidable impurities.
Abstract:
A process for obtaining tantalum powder from tantalum containing scrap material is provided. The process includes selecting source material, such as from sintered anodes for capacitors, hydriding the source material, milling to desired particle size and surface area, dehydriding, deoxidizing, agglomerating, sifting, and acid treating to obtain tantalum powder of a desired size and purity.