Abstract:
The invention pertains to a polymer composition possessing improved resistance towards degradation and discolouring phenomena induced by UV radiation, said composition comprising at least one aromatic sulfone polymer; at least one organic UV absorber and at least one basic compound selected from the group consisting of (i) basic oxides and hydroxides of divalent metals and (ii) salts of a weak acid, and to methods for its manufacture and to shaped articles obtained therefrom.
Abstract:
A polyalkylene carbonate resin composition with interpenetrating network structure includes an aliphatic polycarbonate obtained through a reaction of carbon dioxide with at least one epoxide compound selected from the group consisting of (C2-C10)alkylene oxide substituted or unsubstituted with halogen or alkoxy, (C4-C20)cycloalkylene oxide substituted or unsubstituted with halogen or alkoxy, and (C8-C20)styrene oxide substituted or unsubstituted with halogen, alkoxy, alkyl or aryl, at least one compound selected from a polyol compound, an epoxy compound and an acryl compound, and a curing agent for polymerization or networking.
Abstract:
According to the present invention, a resin composition for a solar-cell encapsulating material includes an ethylene·±-olefin copolymer of which an MFR measured based on ASTM D123 8 under conditions of 190°C and a load of 2.16 kg is equal to or less than 10 g/10 minutes, a silane coupling agent, and a hindered amine-based photostabilizer. pH of the hindered amine-based photostabilizer, which is measured by using the following measuring method is equal to or less than 9.0. In the measuring method, the pH is measured by using a potential difference measuring device and by using a solution which contains 10 g of acetone, 1 g of water, and 0.01 g of the hindered amine-based photostabilizer, as a sample.
Abstract:
A composition includes specific amounts of an amorphous polycarbonate, a partially crystalline polyester, and an ultraviolet absorbing agent comprising a hydroxyaryl group and a hydrogen-bond accepting group. The ultraviolet absorbing agent has a lambda-max less than 400 nanometers. The composition excludes white pigments, and colorants having a lambda-max of 400 to 700 nanometers. The composition is useful for forming a near infrared laser-transmissive part in a laser welded article that further includes a near infrared laser-absorbing part.
Abstract:
The present invention relates to a polymer resin composition including: one or more copolymers selected from the group consisting of an unsaturated nitrile-diene-based rubber-aromatic vinyl graft copolymer, an alkyl methacrylate-diene-based rubber-aromatic vinyl graft copolymer, and an alkyl methacrylate-silicone/alkyl acrylate graft copolymer; a polyester resin; a polycarbonate resin; and a block copolymer including two or more alkylene-based repeating units having 2 to 10 carbon atoms and an aromatic vinyl-based repeating unit, and a molded article thereof. According to the present invention, a polymer resin composition providing an environment-friendly biomass-containing synthetic resin representing improved chemical resistance, and a polymer resin molded article obtained using the same may be provided.
Abstract:
Disclosed is a semi-aromatic polyamide resin composition including 100 parts by mass of a semi-aromatic polyamide (A), 20 to 110 parts by mass of a fibrous reinforcing material (B) and 0.1 to 5 parts by mass of an azine dye (C), wherein the semi-aromatic polyamide (A) includes as the constituent components thereof an aromatic dicarboxylic acid component, an aliphatic diamine component and a monocarboxylic acid component, and has a melting point of 300°C or higher; and the monocarboxylic acid component constituting the semi-aromatic polyamide (A) is an aliphatic monocarboxylic acid having a molecular weight of 200 or more.
Abstract:
The present invention provides a polyamide resin composition comprising (A) a polyamide resin, (B) an aluminic acid metal salt, and (C) an organic acid, wherein the content of the aluminic acid metal salt (B) is larger than 0.6 parts by mass based on 100 parts by mass of the polyamide resin (A).
Abstract:
A dispersion spun fluoropolymer fiber prepared from non-melt-processible polytetrafluoroethylene particles and aluminum oxide particles. The concentration of Al2O3 in the aqueous dispersion may range from between about 0.1% to about 5%, with specific concentration of 0.1%, 1.0. The aqueous dispersion is mixed with an aqueous matrix polymer solution containing a matrix polymer and then extruded into a coagulation bath containing a concentration of ions which coagulate the matrix polymer to form an intermediate fiber structure which carries ionic species. The intermediate fiber structure is sintered to decompose the matrix polymer and coalesce the polytetrafluoroethylene particles and the Al2O3 particles into a blended fiber. The resulting, blended fluoropolymer fiber exhibits improved properties relative to 100% dispersion spun polytetrafluoroethylene fibers.
Abstract:
The present invention relates to a composition containing, besides a thermosetting resin of epoxy type and/or a hardener, at least one vitrimer effect catalyst and at least one polyol selected from linear, branched or cyclic alkanes containing at least two hydroxyl functions. This composition enables the manufacture of vitrimer resins, that is to say of resins that can be deformed in the thermoset state. It also relates to an object obtained from this composition and also to a process for deforming this object.
Abstract:
Metallized articles comprising polycarbonate compositions are disclosed. The compositions include at least one first polycarbonate useful for high heat applications; and a second Bisphenol A polycarbonate. The compositions can include one or more additives. The compositions can be used to prepare articles of manufacture, and in particular, automotive bezel.