Abstract:
A spectrometer comprises a detector array (140) and a prism (60). The prism comprises a first prism element (110) comprising a substantially crystalline crown material, and a second prism element (120) contacting the first prism element, the second prism element comprising a substantially crystalline flint material. The spectrometer further includes optics configured to direct light at least twice through the prism. The prism is configured to disperse light received from the optics at an incident angle therethrough into constituent spectra in visible and infrared wavelength bands that are dispersed from the prism at angles offset from the incident angle. The constituent spectra are directed onto the detector array with approximately equal dispersion across the visible and infrared wavelength bands. Among other things, desirable material selections for the first and second prism elements are also disclosed.
Abstract:
The present invention provides a small spectrocsope that has a short response time. A spectroscope according to an embodiment includes a beam deflector that includes an electro-optic crystal, having an electro-optic effect, and paired electrodes used to apply an electric field inside the electro-optic crystal; spectroscopic means for dispersing light output by the beam deflector; and wavelength selection means for selecting light having an arbitrary wavelength from the light dispersed and output by the spectroscopic means. At the least, either an input end or an output end of the beam deflector is wedge shaped, so that a thickness of the end is gradually reduced from the first face, where the first electrode of the paired electrodes is located, toward the second face, opposite the first face, where the second electrode of the paired electrodes is located.
Abstract:
A light emission device capable of holding a uniform color in various environments. A light source control device has a light detection device for detecting emission brightness of light sources that emit different colors and controlling emission brightness of at least one light source of the light sources based on the detection result of the light detection device. A through-hole is formed in a reflection member for reflecting light emitted from the light source, and the reflection is in a predetermined direction. The light detection device is provided across the reflection member from the light source, and the light propagation member is provided at the through-hole.
Abstract:
A polarizing monochromator (10) comprising a uniaxial birefringent crystal prism (20), the prism has the geometry of a triangular block having a triangular base, a face including a side of the hypotenuse is an input-output face, where light enters and exits, and a face including the longer side of the right angle is a reflection face, the optic axis of the prism is perpendicular to the base of the prism, the angle of the input-output face of the prism with respect to light coming from a collimator optical system (18) is determined in such a manner that ordinary light and extraordinary light exit from the input output face of the prism in opposite directions with respect to an optical axis connecting the collimator optical system and the prism, and a light-collecting optical system (22) is disposed to collect either extraordinary light or ordinary light exiting from the input-output face of the prism.
Abstract:
A spectral-domain optical coherence tomography system using a cross-dispersed spectrometer is disclosed. The interfered optical signal is dispersed by a grating into several orders of diffraction, and these orders of diffraction are separated by an additional dispersive optical element. The spectral interferogram is recorded by a set of linear detector arrays, or by a two-dimensional detector array.
Abstract:
An apparatus and method in which illumination light (24) and collected emitted light (60) share a pathway and subsequently are physically separated (Figure 4). The optical configuration is designed such that at the point of separation, the illumination light (24) has a smaller cross sectional area than the collected light (60). Collected light (60) is directed away from the pathway of the illumination light and to detection optics (68, 66, 73). This configuration is adaptable to illumination and light collection across a broad wavelength spectrum. This configuration is adaptable to scanning in a limited depth of field to allow high throughput optical analysis of samples.
Abstract:
An imaging spectrometer to form a spectrally resolved image of an object, the spectrometer comprising three curved reflecting surfaces, an optical path between the object and the image comprising reflections from the three curved reflecting surfaces. The spectrometer further comprises dispersing elements each with a curved surface in the optical path. One dispersing element is located in the optical path between the object and a first of the curved reflecting surfaces; another dispersing element is located in the optical path between the image and a third of the curved reflecting surfaces. The majority of the spectrometer's dispersive power may be provided by optical elements in the optical paths between the object and the first of the curved reflecting surfaces and between the image and the third of the curved reflecting surfaces.
Abstract:
Die Erfindung betrifft ein Verfahren zum Modulieren von Licht, bei dem ein erstes Lichtbündel, umfassend mindestens einen ersten Lichtstrahl, sowie ein zweites Lichtbündel, umfassend mindestens einen zweiten Lichtstrahl, in ein dispersives Medium mit nicht-linearem optischen Verhalten eintreten und mindestens ein dritter Lichtstrahl aus dem dispersiven Medium austritt, wobei der Brechungsindex des dispersiven Mediums durch die Ein/Aus-Zeit, die Frequenz und/oder die Amplitude des zumindest einen ersten Lichtstrahls variiert und somit das zweite Lichtbündel zum Bilden des dritten Lichtstrahls nach Durchlaufen des dispersiven Mediums in seiner Amplitude, seiner Frequenz, seinem Austrittsort und/oder seiner Austrittsrichtung moduliert wird, sowie eine Vorrichtung zum Modulieren, von Licht, in einem der vorangehenden Ansprüche, umfassend ein dispersives Medium, das ein nicht-lineares optisches Verhalten aufweist und zwischen einem ersten Lichtbündel, umfassend zumindest einen ersten Lichtstrahl, über den der Brechungsindex des dispersiven Mediums variierbar ist, und einem zweiten Lichtbündel, umfassend zumindest einen zweiten Lichtstrahl so angeordnet ist, daß zumindest ein dritter aus dem dispersiven Medium austretender Lichtstrahl sich abhängig vom Berechnungsindex vom zweiten Lichtbündel in Amplitude, Frequenz, Austrittsort und/oder Austrittsrichtung unterscheidet.
Abstract:
Die Erfindung betrifft ein Verfahren zum Modulieren von Licht, bei dem ein erstes Lichtbündel, umfassend mindestens einen ersten Lichtstrahl, sowie ein zweites Lichtbündel, umfassend mindestens einen zweiten Lichtstrahl, in ein dispersives Medium mit nicht-linearem optischen Verhalten eintreten und mindestens ein dritter Lichtstrahl aus dem dispersiven Medium austritt, wobei der Brechungsindex des dispersiven Mediums durch die Ein/Aus-Zeit, die Frequenz und/oder die Amplitude des zumindest einen ersten Lichtstrahls variiert und somit das zweite Lichtbündel zum Bilden des dritten Lichtstrahls nach Durchlaufen des dispersiven Mediums in seiner Amplitude, seiner Frequenz, seinem Austrittsort und/oder seiner Austrittsrichtung moduliert wird, sowie eine Vorrichtung zum Modulieren, von Licht, in einem der vorangehenden Ansprüche, umfassend ein dispersives Medium, das ein nicht-lineares optisches Verhalten aufweist und zwischen einem ersten Lichtbündel, umfassend zumindest einen ersten Lichtstrahl, über den der Brechungsindex des dispersiven Mediums variierbar ist, und einem zweiten Lichtbündel, umfassend zumindest einen zweiten Lichtstrahl so angeordnet ist, daß zumindest ein dritter aus dem dispersiven Medium austretender Lichtstrahl sich abhängig vom Berechnungsindex vom zweiten Lichtbündel in Amplitude, Frequenz, Austrittsort und/oder Austrittsrichtung unterscheidet.