Abstract:
An automatic analyzing apparatus which can make an adjustment to a target temperature so as to stabilize the light intensity of an LED and also can make the adjustment to that temperature in a short time is provided. The automatic analyzing apparatus in which an LED is used for a light source 114 includes a temperature adjusting mechanism 201 for the LED, and the temperature adjusting mechanism 201 includes a metal member 202 provided with the light source 114, a pair of metal pipes (water-flowing pipes) 203 buried in the metal member 202 and allowing constant-temperature bath water to flow therein, and pins (small metal piece members) 204 bringing only a heat-generating lead 252 of the light source 114 into direct contact with the metal member 202. Therefore, the temperature adjusting mechanism 201 can make an adjustment to a target temperature so as to stabilize the light intensity of the LED, and the adjustment to that temperature can be made in a short time.
Abstract:
Beschrieben und dargestellt ist eine Vorrichtung zur Messung der Fluoreszenz eines Mediums (2) mit wenigstens einer Strahlenquelle (3), wenigstens einem Emissionsempfangselement (4) und wenigstens einem optischen Abbildungselement (5), wobei die Strahlenquelle (3) und das Emissionsempfangselement (4) auf der Sensorseite des optischen Abbildungselements (5) angeordnet sind und wobei die Strahlenquelle (2), das Abbildungselement (5) und das Emissionsempfangselement (4) so zueinander ausgerichtet und ausgestaltet sind, dass das auf der Mediumseite des Abbildungselements (5) vorhandene Medium mit Strahlung (6) der Strahlenquelle (3) beaufschlagbar ist und von dem Emissionsempfangselement (4) die Emissionsintensität der von dem Medium (2) durch Fluoreszenz emittierten Mediumstrahlung (7) erfassbar ist, wobei wenigstens ein Streuempfangselement (8) so auf der Sensorseite des optischen Abbildungselements (5) angeordnet und ausgestaltet ist, dass mit dem Streuempfangselement (8) die Streuintensität der von dem Medium (2) gestreuten Mediumstrahlung (9) im Bereich der durch die interessierende Fluoreszenz bedingten Absorption der Strahlung (6) der Strahlenquelle (3) erfassbar ist.
Abstract:
An optical measurement instrument includes one or more temperature sensors (122) arranged to measure sample well specific temperatures from sample wells (111-117) arranged to store samples (103-109) to be optically measured. A processing device (121) of the optical measurement instrument is arranged to correct, using a pre-determined mathematical rule, measurement results obtained by the optical measurements on the basis of the measured sample well specific temperatures. Hence, the adverse effect caused by temperature differences between different samples on the accuracy of the temperature correction of the measurement results is mitigated.
Abstract:
Systems and methods for operating, particularly in the field, a Raman spectroscopy device that includes a laser, a spectrograph, an intensified charge coupled device (ICCD), and an autofocus subsystem. Before spectral data acquisition commences a series of ancillary data checks is performed to monitor operating conditions of at least the laser, the ICCD, and the autofocus subsystem. Further, after each Raman spectrum acquisition, a series of data quality checks is performed to enhance confidence in the just collected data. Only spectral data that passes the data quality checks are further processed. However, all spectral data are stored in a log file. When the log file reaches a predetermined capacity, the log file is closed, and a new round of ancillary data checks is performed to again monitor the status of the Raman spectroscopy device.
Abstract:
The invention relates to a method for preparing cheese, for instance cheese of the hard or semi-hard type. The invention also relates to an apparatus for preparing cheese. The aim is in particular directed to the quality and the efficiency in a continuous cheese preparation process. In further detail, the invention relates to such a method with which non-destructive measurements are carried out on cheeses. In this description and in the claims, 'non-destructive' is understood to mean that the cheeses as such remain intact and not just a sample is taken from those cheeses. In further detail, the invention relates to a method with which near infrared transmission measurements are carried out.
Abstract:
The invention relates to a device for inspecting eggs for the presence of blood. The device comprises a light source in order to pass light at a first wavelength which is not selectively absorbed by blood and light at a second wavelength which is selectively absorbed by blood through an egg to be inspected. Furthermore, the device comprises detection means for converting the light transmission through the egg to be inspected for each of the two wavelengths into corresponding signals, each of the said signals being representative of the light transmission at the relevant wavelength. The device also comprises signal-processing means which are transmission associated with the first wavelength and the light transmission associated with the second wavelength based on the signals emanating from the detection means and to emit a decision signal which is representative of the decision whether or not an egg contains blood on the basis of this ratio. According to the invention, the light source comprises one or more identical LED's (Light Emitting Diode) for generating light which passes through the egg. In use the one or more LED's emit light within a certain narrow spectrum, which spectrum comprises both the first and the second wavelength.
Abstract:
A process for analysing a medical sample, especially of a bodily fluid, using an analysing device, in which a test fluid containing an aliquot part of the sample and reagents is in a cell and the temperature of the test fluid in the cell is determined. In order to determine the temperature of the test fluid contactlessly and directly, the optical absorption of a calibration fluid is determined in a temperature calibration stage at at least two wavelengths in the near i/r range at various temperatures in order to obtain a set of calibration data concerning the temperature dependence of the optical absorption and in a temperature measurement stage the optical absorption of a test fluid of unknown temperature is measured at the same wavelengths and its temperature found by comparison with the absorption data obtained in the measurement stage.
Abstract:
An arrangement for ensuring the stability of the set point for a gas analyzer is disclosed. The set point control circuit (30b) utilizes an amplifier (192) which is alternately switched between a reference voltage and a sensor signal to provide a signal to a processor (39) representing the reference signal and the sensor singal. The processor (39) compares the two signals and adjusts the heater (60) associated with the sensor to provide a stable set point for the gas analyzer. The arrangement eliminates the need for precision resistors within the set point control circuit and therefore significantly reduces the cost of the circuitry.
Abstract:
A semi-automated biological sample analyzer and subsystems are provided to simultaneously perform a plurality of enzyme immunoassays form human IgE class antibodies specific to a panel of preselected allergens in each of a plurality of biological samples. A carousel is provided to position and hold a plurality of reaction cartridges (80). Each reaction cartridge (80) includes a plurality of isolated test sites formed in a two dimensional array in a solid phase binding layer contained within a reaction well (86) which is adapted to contain a biological sample to be assayed. The carousel and cartridges (80) contain structures which cooperate to precisely position the cartridges (80) in each of three separate dimensions so that each cartridge (80) is positioned uniformly. An optical reader operating on a principle of diffuse reflectance is provided to read the results of the assays from each test site of each cartridge (80).