Abstract:
Functionalized Group IVA particles, methods of preparing the Group IVA particles, and methods of using the Group IVA particles are provided. The Group IVA particles may be passivated with at least one layer of material covering at least a portion of the particle. The layer of material may be a covalently bonded non-dielectric layer of material. The Group IVA particles may be used in various technologies, including lithium ion batteries and photovoltaic cells.
Abstract:
An apparatus and process for applying a coating material onto a substrate as a non-uniform layer of coating material, the method including providing a distribution manifold having a cavity and a plurality of dispensing outlets in fluid communication with the cavity, creating relative motion between a substrate and the dispensing outlets in a first direction, and dispensing coating material from the dispensing outlets while simultaneously translating the plurality of dispensing outlets in a second direction non-parallel to the first direction. Using the process, coated articles having a useful non-uniform coating or coatings can be prepared, in particular self-adhesive vapor permeable air and moisture barrier membranes for use as architectural structure wraps.
Abstract:
A coating material for an aluminum substrate for inkjet computer-to-plate and preparation method and use of same. The composition of the coating material is: high polymer 5-40wt%; nano-sized and/or micro-sized oxide particles 5-30 wt%; organic solvent constituting the remainder. The high polymer is at least one selected from the group consisting of MMA-BMA-MA terpolymer resin, phenolic resin, epoxy resin, polyurethane, polyester, urea-formaldehyde resin, polyvinyl formal, polyvinyl butyral and gum arabic. The preparation method for obtaining the coating material is to mix the ingredients together and stir at room temperature. A spin coating method or a roll coating method is used to coat the coating material onto a clean aluminum substrate having not undergone electrolytic graining and anodic oxidation treatment, and then the substrate is baked, resulting in the required roughness.
Abstract:
A roll coater can be modified by the addition of one or more needle tubes that supply coating fluid to the roll coater in discrete locations across the face of the coating roll. The needle tubes supply a localized band of coating material onto the coating roll superimposed over the uniform coating layer already present on the surface of the coating roll from an upstream coating pond creating a stripe pattern over the uniform coating layer. By varying the relative speeds of the coating rolls in the coater, the width of the stripe can also be adjusted.
Abstract:
Embodiments of the invention are related to a coating system and a method for coating a surface of a product. The system may include a coating unit, comprising; a droplet deposition assembly configured to deposit droplets of a coating material from a plurality of nozzles according to a predetermined deposition pattern, to form a coating on the surface. The system may further include a curing unit for curing at least one polymeric component included in the coating material and a control unit configured to receive the predetermined deposition pattern and control the coating unit to deposit the predetermined deposition pattern on the surface, such that the coating has a thickness deviation of less than 1 micron per 1 meter.
Abstract:
The invention relates to a binder resin which is a plastified epoxide-amine adduct P comprising an adduct EA made of epoxide resins E and amines A, optionally modified by incorporation of unsaturated fatty acids F' , which adduct is plastified by incorporation of a fatty acid amide M, or a mixture M' of the said fatty acid amide M with a glyceride mixture GX which is a mixture of at least two of a triglyceride GT, a diglyceride GD, and a monoglyceride GM, to a process for its preparation, and to a method of use thereof as primer for wood, mineral, and metal substrates.
Abstract:
The invention relates to a protection layer which is used as anticorrosion layer on corrosion-prone substrates, especially corroding metals, alloys and other materials, especially on steel, and as a basecoat for the application of further porous layer systems or as a topcoat, and to the process for production thereof and to use on a coated substrate for protection against corrosion and specifically for use against microbially induced corrosion (MIC), wherein the anticorrosion layer comprises a high-density protection layer on a corrosion-prone substrate, containing pre-condensed layer-forming alkoxysilane precursors, wherein the molecules of the pre-condensed layer-forming alkoxysilane precursors are formed from monomer units selected from the group of the triethoxysilane precursors, wherein the molecules of the pre-condensed layer-forming alkoxysilane precursors are crosslinked with one another, and wherein the high-density protection layer has a layer thickness of at least 50 μ m.
Abstract:
The present invention relates to storage-stable water-emulsifiable polyurethane acrylates, to a process for preparation thereof and to the use thereof.