Abstract:
A detection system for a two-dimensional (2D) array is provided. The detection system comprises an electromagnetic radiation source, a phase difference generator, a detection surface having a plurality of sample fields that can receive samples, and an imaging spectrometer configured to discriminate between two or more spatially separated points.
Abstract:
A blazed grating, in particular of the microfabricated type, is disclosed as well as mode hop-free tunable lasers in which this grating is employed, and a process for fabricating gratings of this type. The grating lies in a general plane and comprises a plurality of elongate beams carrying mutually parallel respective reflection surfaces spaced apart from one another with a predefined pitch, each of these reflection surfaces having a normal direction inclined at a grating angle α to the normal direction of the general plane. Furthermore, the grating comprises a plurality of resilient suspension arms connected to the beams and intended to be fastened to a grating support. The suspension arms, the beams and their respective reflection surfaces define an assembly formed from a single part. A first pair of comb electrodes is provided for applying a mechanical force to this assembly, these being placed on a first side of the grating, along an axis transverse to the beams, and designed so as to allow the pitch of the grating to be modified in response to the application of the mechanical force. A second pair of electrodes placed on the opposite side from the first allows, in combination with the first pair, application of a displacement of the assembly, possibly without deforming it. It is thus possible to modulate the wavelength and/or the phase of a light beam with a device that is simple and inexpensive to fabricate and has a small footprint.
Abstract:
An optical characterisation system is described for characterising optical material. The system typically comprises a diffractive element (104), a detector (106) and an optical element (102). The optical element (102) thereby typically is adapted for receiving an illumination beam, which may be an illumination response of the material. The optical element (102) typically has a refractive surface for refractively collimating the illumination beam on the diffractive element (104) and a reflective surface for reflecting the diffracted illumination beam on the detector (106). The optical element (102) furthermore is adapted for cooperating with the diffractive element (104) and the detector (106) being positioned at a same side of the optical element (102).
Abstract:
An optical demultiplexer comprises an optical fiber, a single collimator lens, a diffraction grating, and a photodetector array including photodetectors, wherein the output light from the optical fiber is demultiplexed through the collimator lens and the diffraction grating and focused on the photodetectors to form a light spot distorted because of the aberration of the optical system of the optical demultiplexer, and the photodetector array receives the substantially whole light spot. The photodetector array can be a linear array where photodetectors are linearly arranged or a matrix array where photodetectors are arranged in a matrix.
Abstract:
A small-sized and low-cost wavelength division multiplexer having little insertion loss, little polarization dependence and a broad wavelength bandwidth, the wavelength division multiplexer adopting a grating configuration in which an incident light is retroreflected, exit lights from respective grooves are enhanced by interference effect in the incident direction of the light, wave surfaces of evanescent waves in the grooves are parallel to the normal direction of the grating and phases of the evanescent waves in the respective grooves agree with each other. The wavelength division multiplexer has high diffraction efficiency in each of TM and TE polarized lights at a several-order diffraction order and accordingly has a broad wavelength bandwidth and remarkably low polarization dependence.