摘要:
The present application is directed to a method for preparing gaseous utility streams from gaseous process streams, particularly, removing oil contamination from such streams prior to use in a dry gas seal. The methods and systems may include at least one kinetic swing adsorption process including pressure swing adsorption, temperature swing adsorption, calcination, and inert purge processes to treat gaseous streams for use in dry gas seals of rotating equipment such as compressors, turbines and pumps and other utilities. The adsorbent materials used include a high surface area solid structured microporous and mesoporous materials.
摘要:
An example method of removing hydrogen sulfide from an input gas includes exposing an adsorbent material to an input gas to obtain an output gas. A concentration of hydrogen sulfide of the output gas is less than a concentration of hydrogen sulfide of the input gas. The adsorbent material includes copper oxide, magnesium oxide, and aluminum oxide. An atomic ratio of copper to magnesium to aluminum of the adsorbent material is X:Y:Z, where X is greater than or equal to 0.6 and less than or equal to 0.9, where Y is greater than or equal to 0 and less than or equal to 0.2, where Z is greater than or equal to 0 and less than or equal to 0.2, and where X+Y+Z is equal to 1.
摘要:
Several embodiments of the invention relate to methods for removing compositions comprising dimethyl sulfoxide (DMSO) or related compounds, or odors associated with same. In several embodiments, systems including activated carbon filters, adsorbents, odor adsorbing fabrics, masks, clean air members and clean air supply assemblies are provided in order to perform said methods. In some embodiments the systems and methods facilitating the treatment of traumatic brain injury, ischemic stroke, atherosclerosis, spinal cord trauma, and neurodegenerative illnesses with compositions comprising DMSO.
摘要:
A respiratory protection filter includes filtration media. The filtration media includes an iron-doped manganese oxide material having an average pore size (BJH method) in a range from 1 to 4 nm and a surface area (BET) of at least 300 m2/g, or at least 350 m2/g, or at least 400 m2/g.
摘要:
A method is disclosed for removing ozone from a gas. According to this method, the gas is contacted with an adsorbent that includes a transition metal oxide or metal organic framework to form a treated gas. The treated gas is contacted with a noble metal catalyst to catalytically decompose ozone in the treated gas, thereby forming an ozone-depleted treated gas.
摘要:
The present invention relates generally to the field of emission control equipment for boilers, heaters, kilns, or other flue gas-, or combustion gas-, generating devices ( e . g ., those located at power plants, processing plants, etc.) and, in particular to a new and useful method and apparatus for: (i) reducing the levels of one or more gas phase selenium compounds and/or one or more other RCRA metals, or RCRA metal compounds (regardless of whether such other RCRA metals or RCRA metal compounds are in the gas phase or some other phase); (ii) capturing, sequestering and/or controlling one or more gas phase selenium compound and/or one or more other RCRA metals, or RCRA metal compounds (regardless of whether such other RCRA metals or RCRA metal compounds are in the gas phase or some other phase) in a flue gas stream and/or in one or more pieces of emission control technology; and/or (iii) capturing, sequestering and/or controlling one or more gas phase selenium compound and/or one or more other RCRA metals, or RCRA metal compounds (regardless of whether such other RCRA metals or RCRA metal compounds are in the gas phase or some other phase) in a flue gas stream prior to desulfurization and/or in one or more pieces of emission control technology prior to one or more desulfurization units.
摘要:
Hydrogen and carbon monoxide impurities are removed from a dry gas comprising the impurities, wherein the dry gas is at least substantially free of carbon dioxide, by passing the dry gas with sufficient residence time, e.g. at least 1.5 s, through a layer of catalyst comprising a mixture of manganese oxide and copper oxide. The use of expensive noble metal catalysts to remove hydrogen may thereby be avoided. In addition, regeneration of the catalyst using oxygen-containing regeneration gas does not reduce the effectiveness of the catalyst.
摘要:
In the step of regenerating a carbon dioxide capturing material, the amount of a regeneration gas to be supplied to a carbon dioxide recovery column is reduced to offer higher energy efficiency and to shorten the time taken to perform the regeneration step. A carbon dioxide recovery apparatus includes a carbon dioxide sorbing column, a heating unit, and first, second, and third channels. The carbon dioxide sorbing column contains a carbon dioxide capturing material. The heating unit heats the carbon dioxide capturing material. A carbon-dioxide-containing gas is introduced via the first channel into the carbon dioxide sorbing column. The regeneration gas is introduced via the second channel into the carbon dioxide sorbing column. A gaseous mixture containing a gas desorbed from the carbon dioxide capturing material is recovered via the third channel. In the apparatus, the heating unit preheats the carbon dioxide capturing material, and then the regeneration gas is introduced into the carbon dioxide sorbing column to recover carbon dioxide from the carbon dioxide capturing material.
摘要:
Provided is a carbon dioxide capturing material that captures a large amount of carbon dioxide, less suffers from decrease in an amount of the captured carbon dioxide even after firing, and has excellent heat resistance. The carbon dioxide capturing material separates and recovers carbon dioxide from a carbon-dioxide-containing gas. The capturing material includes an oxide containing Ce and Al. The oxide contains Ce in a highest content among metal elements in the oxide and contains Al in a content of 0.01% by mole to 40% by mole.
摘要:
A process removes substances from fluids, especially from exhaust gases of combustion plants, by contacting the fluid to be purified with Puzzolanes that contain at least 5% by weight of silicon and/or aluminum-compounds. These compounds can be dissolved away under the conditions prevailing during purification, such that they are excavated from the Puzzolanes.