Abstract:
A display mirror assembly for a vehicle is disclosed. The assembly comprises a display device defining a display surface having a display perimeter elongated along a length. The display device is in communication with a primary PCB. The primary PCB comprises a first side and an opposing second side. The first side is directed toward the display device. The assembly also comprises a heat sink in connection with the second side of the primary PCB and extending substantially coextensive with the length display perimeter.
Abstract:
An electrical assembly which has a multi-layer conformal coating on at least one surface of the electrical assembly, wherein each layer of the multi-layer coating is obtainable by plasma deposition of a precursor mixture comprising (a) one or more organosilicon compounds, (b) optionally O2, N2O, NO2, H2, NH3, N2, SiF4 and/or hexafluoropropylene (HFP), and (c) optionally He, Ar and/or Kr. The chemistry of the resulting plasma-deposited material chemistry can be described by the general formula: SiOxHyCzFaNb. The properties of the conformal coating are tailored by tuning the values of x, y, z, a and b.
Abstract:
A Heating, Ventilation, and Air Conditioning (HVAC) controller may include a housing, a display, a printed wiring board, a flextail, and a temperature sensor. The housing may be configured to house the display, the printed wiring board, the flextail, and the temperature sensor. The flextail may extend from, for example, the display or other component of the HVAC controller, along the interior surface of the housing, and connect to a connector on the printed wiring board. The temperature sensor may be mounted on the flextail, and connected to the printed circuit board via the flex tail or other connection. In some cases, the temperature sensor may be positioned on the flextail such that when the flextail is connected to the printed wiring board, the temperature sensor is electrically connected to the printed wiring board and is facing and/or is adjacent the interior surface of the housing.
Abstract:
A conductive trace design is described that minimizes the possibility of crack initiation and propagation in conductive traces during bending. The conductive trace design has a winding trace pattern that is more resistant to the formation of cracks at high stress points in the conductive traces. The conductive trace design includes a cap that helps ensure electrical connection of the conductive trace even though one or more cracks may begin to form in the conductive portion of the conductive trace.
Abstract:
A display device according to an exemplary embodiment includes: a substrate including a display region configured to display an image, and a pad region positioned around the display region; and a first pad unit positioned on the pad region, wherein the first pad unit includes a first terminal region including a plurality of first pad terminals arranged in a first pattern, and a second terminal region including a plurality of second pad terminals arranged in a second pattern different from the first pattern.
Abstract:
Disclosed is a display device using a COF operating with a low driving voltage. The present invention includes a display panel, a COF having a connection part on which the display channel is placed and a chip part on which a chip is placed, data lines connected to the COF in a direction toward the chip, the data lines forming curves starting from the display panel, scan lines straightly connected to the COF, the scan lines starting from the panel in the direction toward the chip, scan line connection lines on the connection part, the scan line connection lines connecting the scan lines electrically to the COF, and data line connection lines on the connection part, the data line connection lines connecting the data lines electrically to the COF.
Abstract:
The present invention discloses a display apparatus and a manufacturing method thereof. The display apparatus comprises a display device, an out-cell device and a flexible printed circuit board for being connected to an external signal. The display device has a first category of leads and a second category of leads; the out-cell device has reserved leads, and the reserved leads are electrically connected to the second category of leads; and the flexible printed circuit board has a first category of pins and a second category of pins, the first category of leads are electrically connected to the first category of pins, and the second category of leads are electrically connected to the second category of pins. In this way, the reserved leads are electrically connected to the second category of leads, while the second category of leads are electrically connected to the second category of pins, thereby enabling conduction between the out-cell device and the external signal. As compared with the prior art in which the out-cell device and the display device are provided with their respective flexible printed circuit boards, the display apparatus as provided in the embodiments of the present invention omits the step of separately making a flexible printed circuit board of the out-cell device, thereby reducing the cost of production of the display apparatus and at the same time further simplifying the structure of the out-cell device of the display apparatus.
Abstract:
Disclosed are an LED (Light Emitting Diode) display module and a method of fabricating the LED display module. Lamp beads (1) in the LED display module are fixed to the surface of a linearly arranged lamp bead plate (2), the lamp bead plate (2) is fixed to a driving PCB (Printed Circuit Board) (3), the surface of the lamp bead plate (2) is perpendicular to the surface of the driving PCB (3), the surface of the driving PCB (3) is perpendicular to the surface of a glass plate (5), and a fixed member (7) is fixed on a frame (4). The transparent glass plate (5) with high transparency is employed as a mounting body and the driving PCB (3) is transversely disposed on the glass plate (5), so that shielding of light by the driving PCB (3) can be remarkably reduced and the transparency of the LED display module is improved. And meanwhile, the pixel density of the LED display module is enhanced by fixing the plurality of lamp beads (1) to the surface of the linearly arranged lamp bead plate (2).
Abstract:
An apparatus including a substrate including a first side and an opposite second side; at least one first circuit device on the first side of the substrate, at least one second device on the second side of the substrate; and a support on the second side of the substrate, the support including interconnections connected to the at least one first and second circuit device, the support having a thickness dimension operable to define a dimension from the substrate greater than a thickness dimension of the at least one second circuit device. A method including disposing at least one first circuit component on a first side of a substrate; disposing at least one second circuit component on a second side of the substrate; and coupling a support to the substrate, the substrate defining a dimension from the substrate greater than a thickness dimension of the at least one second circuit component.