摘要:
Disclosed is a thermo-shrinkable polyester film in which shrinkage uniformity is ensured in a shrinking process thus realizing superior quality of the outer appearance without causing a poorly printed state, reducing the production cost of the shrinking process and improving the productivity.
摘要:
The present invention relates to a heat-shrinkable polyester-based single-layer film which has superior shrinkability and color, and thus provides aesthetic enhancement to the product to which the film is attached when the film is printed. Therefore, the polyester-based single-layer film of the present invention can be valuably used as a label film as it can replace labels made of paper, and can be easily peeled off by means of hot water, thus contributing to the recycling of bottles.
摘要:
A method for producing shape memory anti-counterfeiting identifier includes the following steps: a high polymer material with a shape memory function without the need of sunshine cross-linking or chemical cross-linking is directly extruded to become sheet in an extruder or is injected to be molded in an injection molding machine, and the extruded sheet can be a planar sheet or a sheet having a surface on which concave-convex patterns or characters are formed; the above sheet is then heated to the temperature higher than the vitrification temperature and lower than the melting point temperature, and the patterns or characters are pressed on the planar sheet, or the sheet on which the concave-convex patterns or characters are already formed is pressed to become planes or other patterns and characters; the sheet is then cut into small sheets, wherein one pattern or one group of characters is implied on every small sheet, and when the small sheets are again heated to the temperature higher than the vitrification temperature and lower than the melting point temperature, they will return to the extruded state.
摘要:
The present invention relates to an article consisting of or comprising a bidirectional shape-memory polymer (bSMP), the bSMP comprising: first phase-segregated domains (AD) having a first transition temperature (Tt,AD) corresponding to a crystallization transition or glass transition of the first domains (AD), second phase-segregated domains (SD) having a second transition temperature (Tt,AD) corresponding to a crystallization transition or glass transition of the second domains (SD), the second transition temperature (Tt,SD) being higher than the first transition temperature (Tt,AD), and covalent or physical bonds cross-linking the polymer chains of the bSMP, and in this way interconnecting the first and second domains (AD, SD), wherein the second phase-separated domains (SD) form a skeleton which is at least partially embedded in the first phase-segregated domains (AD), and wherein polymer chain segments of the bSMP forming the first domains (AD) are substantially orientated in a common direction, such that the bSMP is able to undergo a reversible shape-shift between a first shape (A) at a first temperature (Thigh) and a second shape (B) at a second temperature (Tlow) upon variation of temperature between the first and second temperature (Thigh, Tlow) driven by the crystallization and melting or vitrification and melting of the first phase-separated domains (AD) and without application of an external stress, with Tlow