Abstract:
The present invention relates to a mobile device for fluorescence detection. The device comprises an excitation source for emitting electromagnetic radiation to a sample position, wherein the wavelength of the emitted radiation at peak emission is in a range of 350 nm to 500 nm, and means for detecting the fluorescing light emitted from the sample position. Furthermore, the invention is related to the use of said mobile device for fluorescence detection.
Abstract:
A method of marking an industrial process material (7) including selectively incorporating a luminescent marker (1) onto and/or into the industrial process material (7) in a trace amount insufficient to be optically detectable in the presence of ambient light but sufficient to be non-destructively optically detectable in and/or on the industrial proce material (7) in situ in the field or on-site. The trace amount of the luminescent marker (1) is used to track, identify authenticate the industrial process material (7) for at least one of material control, inventory control, stock control, logistics control, quality control and pollution control.
Abstract:
A hyperspectral imaging system and methods thereof especially useful in fields such as medicine, food safety, chemical sensing, and agriculture, for example. In one embodiment, the hyperspectral imaging module contains a light source (1) for illuminating the object (6) in a light-tight housing (17). The light is spectrally filtered (4) prior to illuminating the object. The light leaving the object is then directed through imaging optics (T) to an imaging array (9). In another embodiment, the object of interest is illuminated by ambient light which is then compensated by a light modulation system. In this embodiment, the light emitted from the object is spectrally filtered prior to reaching the imaging array.
Abstract:
A hand-held automatic refractometer comprises a linear scanned array having a plurality of photoelectric cells and an optical system for directing light onto the array, the particular photoelectric cells of the array which are illuminated by said light being determined by the index of refraction of a sample substance placed on a sample surface of a prism of the optical system. A reflective surface is arranged close to the array at an acute angle thereto for directing primary light from the sample-prism boundary to the array, and for redirecting stray reflected light from the array back onto the array. The disclosed refractometer has a compact design wherein the linear array extends in a direction substantially parallel to the prism sample surface. The prism is mounted in a housing and the sample surface faces upward to allow access through a sample well of the housing, while the array is mounted in the housing facing in a downward direction.
Abstract:
The invention relates to a method for acquiring hyperspectral and/or multispectral data from a patient. The method comprises the following steps: illuminating a region of interest on tissue of the patient; collecting data images of the region of interest with a camera or with a lens and a detector; performing standard data analysis and standard classification methods; and detecting the state of systemic physiology.
Abstract:
A system, method and apparatus for taking a Raman spectrum of a sample is disclosed. In one embodiment, for example, an integrated Raman spectrometer (120) is provided. In another embodiment, a portable Raman spectrometer (320) is provided. In another embodiment, a Raman spectrometer (20) is provided comprising a collimated beam tube (32) for transmitting excitation radiation to an external optical system, such as a microscope (430), a telescope or a camera lens. In another embodiment, a method for correcting a Raman spectrum for background interference is provided. In yet another embodiment, a method for rejecting fluorescence in a Raman spectrometer is provided. A chemical reactor (930) comprising a built-in Raman detector for monitoring a chemical reaction in a reaction chamber of the reactor is also provided.
Abstract:
A self-contained, optical hand-held diagnostic device is provided with a body having a pocket-sized form factor sized and shaped for engagement by a user's hand. The body includes an integral power supply and an integral display. A channel receives reagent sample media in an indexed fit. The sample media has a plurality of spaced test areas which change color according to an amount of a constituent or property in the sample. Imagers are located within the body so that each of the imagers is superposed with one of the test areas when the sample media is indexed within the channel, to capture an image thereof. A processor is coupled with the imagers to analyze the captured images. The processor also derives a diagnosis value from the analysis, and generates an output corresponding thereto. The display is configured to receive and display the output.
Abstract:
A system and method for detecting fluorescence in a sample (140). Where an efficient light source (120) projects light onto said sample, and where fluorescence in said sample is detected by a photodetector (180).
Abstract:
The disclosure generally relates to a method and apparatus for multi-wavelength imaging spectrometer. More specifically, in one embodiment, the disclosure relates to an optical filter for passing photons therethrough. The filter includes a first filter stage and a second filter stage. The first filter stage may include a first retarder element (450) and a first liquid crystal cell (455). The first element may include an input face and an output face. One of the first element faces is not oriented substantially normal to the trajectory of photons passing through the filter.
Abstract:
A sensor comprising a tunable laser array (501-504), an optical head (505), a sample holder, (506), an optical detector (507), a heater cooler element (508), a controller and tuner (509), a battery and power supply unit (510), and a wireless transmitter (511).