Abstract:
A dual-mode method and apparatus of selectively measuring samples in either a vessel or as a surface tension retained sample held between two opposing pedestals is introduced. In either configuration, such modes further contain optical paths from a source system through a small-volume or large-volume sample to a spectrometer based system. Such a system enables a user to measure samples with absorbances ranging from about 0.005 up to about 2.0 Absorbance Units for any given wavelength.
Abstract:
An apparatus and method are provided. In particular, at least one first electro-magnetic radiation may be provided to a sample and at least one second electro-magnetic radiation can be provided to a non-reflective reference. A frequency of the first and/or second radiations varies over time. An interference is detected between at least one third radiation associated with the first radiation and at least one fourth radiation associated with the second radiation. Alternatively, the first electro-magnetic radiation and/or second electro-magnetic radiation have a spectrum which changes over time. The spectrum may contain multiple frequencies at a particular time. In addition, it is possible to detect the interference signal between the third radiation and the fourth radiation in a first polarization state. Further, it may be preferable to detect a further interference signal between the third and fourth radiations in a second polarization state which is different from the first polarization state. The first and/or second electro-magnetic radiations may have a spectrum whose mean frequency changes substantially continuously over time at a tuning speed that is greater than 100 Tera Hertz per millisecond.
Abstract:
There is provided, for example, a food quality examination device configured to inspect the quality of food with high sensitivity using an InP-based photodiode in which a dark current is decreased without a cooling mechanism and the sensitivity is extended to a wavelength of 1.8 µm or more. An absorption layer 3 has a multiquantum well structure composed of a III-V group semiconductor. A pn junction is formed by selectively diffusing an impurity element into the absorption layer. The concentration of the impurity in the absorption layer is 5 × 10 16 /cm 3 or less. The food quality examination device receives light having at least one wavelength of 3 µm or less within the absorption band of water, thereby performing the inspection.
Abstract:
A terahertz time-domain spectrometer scanning sensor system includes a transmitter and a receiver that are secured to a mobile scanner head. Optical pump light, in the form of short pulses launched from a stationary laser located remotely from the scanner head, is delivered to the transmitter and receiver through a controlled fiber optic cable arrangement so that variations in temporal pulse relays that are associated fiber optic transmission are minimized. In this fashion, the movement of the fiber optic cable is maneuvered along a defined path so as to control the bends in the cable and thus minimize variations in temporal delays that can otherwise arise as the pulses of light are transmitted through the fiber. Pulses of laser light launched from the laser into the optical fiber will exit the cable with consistent (i) time of arrival, (ii) phase duration, and (iii) polarization state and energy.
Abstract:
A spectrophotometer includes a plurality of LEDs arranged in a circular array, each having a calibrated power input determined by the use of pulse width modulation and each having a unique wavelength band determined by the utilization of a unique fluorescent phosphor coating or lens. At least one of the LEDs comprising a phosphor-free high energy UV LED. Light reflected to the spectrophotometer is divided into predetermined wavelength ranges through the utilization of a linear variable filter and photo detectors wherein the analog signal from a photo detector is converted to a digital value through the use of auto-ranging gain technique.
Abstract:
Die Erfindung betrifft eine Beleuchtungseinrichtung (1) mit einem Laser (3), der einen Lichtstrahl (7) emittiert, der auf ein mikrostrukturiertes optisches Element (13) gerichtet ist, das das Licht des Lasers spektral verbreitert. Der Laser (3) und das mikrostrukturierte optische Element (13) sind zu einem Modul zusammengefasst, wobei das mikrostrukturierte optische Element (13) aus Photonic-Band-Gap-Material besteht und als Lichtleiterfaser ausgebildet ist, und wobei eine optische Diode zwischen dem Laser und der Lichtleitfaser vorgesehen ist, die eine Rückreflexion des Lichtstrahls des Lasers, die von den Enden der Lichtleitfaser herrührt, unterdrückt.
Abstract:
Die Erfindung betrifft eine Anordnung zum Untersuchen mikroskopischer Präparate mit einem Scan-Mikroskop, bei der ein Pulslaser (1) Licht auf eine Lichtleitfaser aus Photonic-Band-Gap-Material lenkt, wobei eine optische Diode zwischen dem Laser und der Lichtleitfaser vorgesehen ist, die eine Rückreflexion des Lichtstrahls des Lasers, die von den Enden der Lichtleitfaser herrührt, unterdrückt.