Abstract:
A prognostic method of analyzing a biological sample from a patient with cancer to predict their response to cancer treatment using radiotherapy, chemotherapy, hormonal therapy and/or combinations of these treatments. The prognostic method involves performing spectroscopy (such as Raman spectroscopy) on the biological sample to obtain a spectrum. The obtained spectrum is then correlated with one or more pre-classified spectra (such as by the use of principle component analysis PCA, decision trees or a neural network) to obtain a probability factor indicating the likelihood of success of cancer treatment by one of the specified modalities on the cancer patient.
Abstract:
A method of determining moisture content of a composite material includes providing composite material standards with moisture content, collecting infrared spectra on the composite material standards, calibrating the infrared spectra to the moisture content, providing a composite material and predicting moisture content of the composite material based on the infrared spectra and the composite material standards.
Abstract:
The invention relates to a characterization device (50) for characterizing a sample (S) comprising: - a memory (MEM) storing a mesured spectrum (A s+p ) of said sample, performed through a translucent material, and a measured spectrum of the translucent material (A p ), - a processing unit (PU) configured to: * determine a spectral energy (E s+p ) of the measured spectrum (A s+p ) of the sample through the translucent material (A s+p ), * estimate a coefficient ( γ̂ ) from said spectral energy (E s+p ) and, * determine a corrected spectrum (Â s ) of the sample from the measured spectrum (A s+p ) of the sample through the translucent material and from a corrected spectrum of the translucent material (Â p ),
said corrected spectrum of the translucent material (Â p ) being determined from the measured spectrum of the translucent material (Â p ) and from the estimated coefficient ( γ̂ ).
Abstract:
A method of non-destructively determining the amount of ultraviolet degradation of a surface and/or paint adhesion characteristics of the surface corresponding with UV damage including determining a physical property of a composite material/surfacing film by providing a series of composite materials/surfacing films which are subjected to increasing UV light experience to create a set of UV damage standards, collecting mid-IR spectra on those standards, performing data pre-processing and then multivariate calibration on the spectra of the composite materials/ surfacing films, and using that calibration to predict the UV damage for samples in question.
Abstract:
Biomarkers of high blood pressure are measured to identify high blood pressure of the subject based on one or more biomarkers. In many embodiments, the response of the biomarker to blood pressure occurs over the course of at least an hour, such that the high blood pressure identification is based on a cumulative effect of physiology of the subject over a period of time. The methods and apparatus of identifying high blood pressure with biomarkers have the advantage of providing improved treatment of the subject, as the identified biomarker can be related to an effect of the high blood pressure on the subject, such as a biomarker corresponding to central blood pressure. The sample can be subjected to increases in one or more of pressure or temperatures, and changes in the blood sample measured over time.
Abstract:
Described herein are methods and systems for analyzing a sample by applying time resolved laser induced fluorescence spectroscopy to the sample to measure lifetime time decay profile data relating to the sample, and applying multivariate analysis to process the data so as to classify a sample as, for example, normal or abnormal. The sample may be cells, fluid or tissue from any organ. The sample may be in vitro or in vivo. The data may be obtained in situ or in vitro.
Abstract:
Die vorliegende Erfindung betrifft ein Verfahren zur Bestimmung des Aushärtungsgrades von mindestens einer auf einer Trägerplatte angeordneten Polymerschicht, insbesondere von mindestens einer Harzschicht (insbesondere einem Melamin-Formaldehyd-Harz, einem Melamin-Harnstoff-Formaldehyd-Harz oder einem Harnstoff-Formaldehyd-Harz), umfassend die Schritte Aufnehmen von mindestens einem NIR-Spektrum (z.B wie in Figur 1) der auf der mindestens einen Trägerplatte angeordneten Polymerschicht nach dem Aushärten der mindestens einen Polymerschicht mit der Trägerplatte unter Verwendung von mindestens einem NIR-Detektor in einem Wellenlängenbereich zwischen 500 nm und 2500 nm, bevorzugt zwischen 700 nm und 2000 nm, insbesondere bevorzugt zwischen 900 nm und 1700 nm; Bestimmen des Aushärtungsgrades der mindestens einen Polymerschicht durch Vergleich des für die mindestens eine Polymerschicht ermittelten NIR-Spektrums mit mindestens einem für mindestens eine Referenzprobe der mindestens einen Polymerschicht mit bekanntem Aushärtungsgrad (bestimmt mittels eines Säuretests mit 4 M Salzsäure) ermittelten NIR-Spektrums mittels einer multivarianten Datenanalyse (MDA), wobei das mindestens eine für die mindestens eine Referenzprobe ermittelte NIR-Spektrum mit bekanntem Aushärtungsgrad der mindestens einen Polymerschicht nach dem Aushärten der Polymerschicht mit der Trägerplatte unter Verwendung desselben NIR-Detektors in einem Wellenlängenbereich zwischen 500 nm und 2500 nm, bevorzugt zwischen 700 nm und 2000 nm, insbesondere bevorzugt zwischen 900 nm und 1700 nm vorher bestimmt wurde. Die Polymerschicht weist eine Dicke zwischen 10 und 150 µm, bevorzugt zwischen 20 und 100 µm, insbesondere bevorzugt zwischen 30 und 80 µm auf.
Abstract:
Background composition concentration data representative of an actual background composition of a sample gas can be used to model absorption spectroscopy measurement data obtained for a gas sample and to correct an analysis of the absorption spectroscopy data (e.g. for structural interference and collisional broadening) based on the modeling.
Abstract:
A method and device for detection of bone in meat identifies fragments larger than about 1 mm using spectral optical imaging and ultrasound. Spectral imaging can detect foreign material proximate to the surface and ultrasound can detect material within the sample. The sample is irradiated by light and reflected light or Raman scattered light measured. The sample is similarly irradiated by ultrasound and reflected or transmitted sound waves give a set of amplitude data points, which include temporal delay. These data points are then processed by statistical methods to derive a set of vectors in n-dimensional space, which are compared to a calibrated data set of derived vectors which have distinct identifying loci for each type of surface, are indicative of the presence or absence of defects.