Abstract:
A method and apparatus for generating a color mapping for a dental object. The method includes generating a transformation matrix according to a set of spectral reflectance data for a statistically valid sampling of teeth. Illumination is directed toward the dental object over at least a first, a second, and a third wavelength band, one wavelength band at a time. For each of a plurality of pixels in an imaging array, an image data value is obtained, corresponding to each of the at least first, second, and third wavelength bands. The transformation matrix is applied to form the color mapping by generating a set of visual color values for each of the plurality of pixels according to the obtained image data values and according to image data values obtained from a reference object at the at least first, second, and third wavelength bands. The color mapping can be stored in an electronic memory.
Abstract:
An optical assembly for use with a spectrophotometer. The optical assembly may comprise an illumination source, a detection sensor, a monitor sensor, and an optical piece having a first side adapted to face a sample. The optical piece may define an illumination channel extending from the illumination source toward the first side. The optical piece may also define a detection channel extending from the first side toward the detection sensor, hi addition, the optical piece may define a monitor channel extending from the illumination channel toward the monitor sensor. Also, a light emitting diode (LED) assembly for use with an optical measurement device. The LED assembly may comprise a substrate having a top surface and a bottom surface and a plurality of LED dies positioned on the substrate to emit light in a first direction normal to the bottom surface of the substrate. The LED assembly may also comprise a plurality of leads in electrical contact with the plurality of LED dies. The plurality of leads may be positioned on the bottom surface of the substrate, and may be configured to surface-mount to a board.
Abstract:
A method includes generating at least one first light beam (114) and generating at least one second light beam (118) and at least one third light beam (120) using the at least one first light beam (114) . The at least one first light beam (114) has a plurality of first regions, the at least one second light beam (118) has a plurality of second regions, and the at least one third light beam (120) has a plurality of third regions. Each of the first, second, and third light beams (114, 118, 120) has at least two regions that are spectrally different . The method also includes measuring a spectrum in each of a plurality of first wavelength bands for each of the second regions. The method further includes illuminating at least part of an object (102) with the at least one third light beam (120) to produce at least one fourth light beam (126) . The at least one fourth light beam (126) has a plurality of fourth regions, where at least two of the fourth regions are spectrally different. In addition, the method includes measuring a spectrum in each of a plurality of second wavelength bands for each of the fourth regions and identifying a radiance transfer factor of the object (102) using at least some of the measured spectra.
Abstract:
Ein Handlichtmessgerät umfasst ein Gerätegehäuse (G), welches eine Unterseite aufweist, in der ein Messfenster (7) vorgesehen ist, durch welches ein Messstrahlengang hindurchgreift, so dass ein Messobjekt ausmessbar ist, wenn das Gerätegehäuse (G) mit seiner Unterseite auf dem Messobjekt positioniert ist. Das Messgerät weist eine integrierte, beweglich gelagerte Weissreferenzkachel (W) auf, welche in den Messstrahlengang einführbar und wieder aus diesem entfernbar ist. Die Weissreferenzkachel (W) ist in einem Endbereich einer länglichen Trägerplatte (10) auf deren dem Gehäuseinneren zugewandten Seite angeordnet. Die Trägerplatte (10) ist zwischen einer Parkposition. und einer Arbeitsposition hin und her beweglich gelagert, wobei die Trägerplatte (10) in der Parkposition das Gerätegehäuse (G) an seiner Unterseite abschliesst und in das Gerätegehäuse (G) versenkt ist und wobei die Trägerplatte (10) in der Arbeitsposition aus der Unterseite des Gerätegehäuses (G) herausgehoben und in Längsrichtung versetzt ist und mit dem mit der Weissreferenzkachel (W) versehenen Endbereich das Messfenster (7) abdeckt. Für die Kinematik der Trägerplatte (10) bzw. der Weissreferenzkachel (W) ist nur ein geringer konstruktiver Aufwand erforderlich und die Verstellung der Trägerplatte bzw. der Weissreferenzkachel (W) ist einfach und bequem durchführbar.
Abstract:
An image processing system is used for dentistry. Upon creating a false tooth of a patient (59), a plurality of illuminating light of LEDs with different wavelengths emit light and a photographing apparatus (1A) photographs a tooth portion of the patient (59), thereby obtaining image data. The image data is sent to a dentistry filing system (2A) serving as a processing apparatus, and color reproducing data is obtained by calculation. The color reproducing data is sent to a dentistry factory (55) via a public line. Data is searched from a database (56) for calculating a ceramic compounding ratio, compound data of the ceramic false tooth is obtained, matching the color of the tooth portion of the patient (59), and the false tooth approximate to the tooth color of the patient (59) is created. The photographing apparatus has a control unit (18) which switches between a spectroscopic image capturing mode and a moving image capturing mode.
Abstract:
Offenbart ist ein Verfahren zum Kalibrieren eines ersten Colorimeters für die Messung eines Satzes von Farbwiedergabekennwerten eines Farbmonitors oder Farbprojektors mit folgenden Schritten: Festlegen einer ein Einzelgerät identifizierenden eindeutigen Farbmonitor- oder Farbprojektoridentifikation und meßtechnisches Bestimmen des Initialsatzes von Farbwiedergabekennwerten am im wesentlichen fabrikneuen Farbmonitor oder Farbprojektor unter Verwendung des zweiten Colorimeters; Speichern der eindeutigen Farbmonitor- oder Farbprojektoridentifikation und des Initialsatzes von Farbwiedergabekennwerten in der Speichereinrichtung des Farbmonitors oder Farbprojektors; meßtechnisches Bestimmen des Satzes von Farbwiedergabekennwerten am im wesentlichen fabrikneuen Farbmonitor oder Farbprojektor unter Verwendung des ersten Colorimeters Auslesen der eindeutigen Farbmonitor- oder Farbprojektoridentifikation und des Initialsatzes von Farbwiedergabekennwerten aus der Speichereinrichtung des Farbmonitors oder Farbprojektors durch das erste Colorimeter, Vergleichen des am im wesentlichen fabrikneuen Farbmonitor oder Farbprojektor unter Verwendung des ersten Colorimeters meßtechnisch bestimmten Satzes von Farbwiedergabekennwerten mit dem Initialsatz von Farbwiedergabekennwerten aus der Speichereinrichtung des Farbmonitors oder Farbprojektors und Bestimmen eines Satzes von Kalibrationskorrekturparametern für das erste Colorimeter, wobei der Satz von Kalibrationskorrekturparametern den am im wesentlichen fabrikneuen Farbmonitor oder Farbprojektor unter Verwendung des ersten Colorimeters meßtechnisch bestimmten Satz von Farbwiedergabekennwerten in den Initialsatz von Farbwiedergabekennwerten aus der Speichereinrichtung des Farbmonitors oder Farbprojektors zu transformieren vermag und Speichern der eindeutigen Farbmonitor- oder Farbprojektoridentifikation aus der Speichereinrichtung des Farbmonitors oder Farbprojektors und des zugehörigen Satzes von Kalibrationskorrekturparametern für das erste Colorimeter in der Speichereinrichtung des ersten Colorimeters. Offenbart ist ferner ein entsprechendes Colorimeter.
Abstract:
Systems and methods are provided to address the potential impact of lighting conditions/light sources on color measurement and/or color matching, particularly as such light variation relates to UV levels. The systems and methods generally include a UV visualizer that is adapted to establish and/or compare UV profiles for individual substrates/samples, e.g., print materials, under various illuminating conditions. According to the disclosure, it is possible to determine both (i) how a sample (e.g., a printing material) responds to UV light, and (ii) the amount of UV light under which the sample is viewed without the need to measure the excitation pattern of the sample/paper or the spectra of the illuminating light. In this way, a true color reading and/or color match may be achieved. Color corrections may be implemented that necessarily address the level of color brightener, if any, in the substrate or paper to be printed upon.
Abstract:
Systems and methods are provided to address the potential impact of lighting conditions/tight sources on color measurement and/or color matching, particularly as such light variation relates to UV levels. The systems and methods generally include a UV visualizer that is adapted to establish and/or compare UV profiles for individual substrates/samples, e.g., print materials, under various illuminating conditions. According to the disclosure, it is possible to determine both (i) how a sample (e.g., a printing material) responds to UV light, and (ii) the amount ofUV light under which the sample is viewed without the need to measure the excitation pattern of the sample/paper or the spectra of the illuminating light. In this way, a true color reading and/or color match may be achieved. Color corrections may be implemented that necessarily address the level of color brightener, if any, in the substrate or paper to be printed upon.
Abstract:
Die Erfindung betrifft ein Verfahren zur Farbmessung auf Bedruckstoffen (14) in Druckmaschinen (1) mit wenigstens einem farblich eher ungenau messenden Farbmessgerät (7) und einem farblich exakt messenden Farbmessgerät (8). Die Erfindung zeichnet sich dadurch aus, dass das farblich ungenau messenden Farbmessgerät (7) und das farblich exakt messenden Farbmessgerät (8) über eine Kommunikationsverbindung (18) Daten austauschen und dass mittels der Daten des farblich exakt messenden Farbmessgerät (8) eine Kalibrierung des farblich ungenau messenden Farbmessgeräts (7) vorgenommen wird.