Abstract:
Methods and apparatus for detecting biological activities in a specimen such as blood are disclosed. The present invention provides a system whereby the intensity of light with a wavelength within the range of about 600 nm to 800 nm introduced into a sample at a first location is measured as it reemerges at a second location. A significant change in the intensity of the reemerging light indicates the presence of biological activity. Preferably, the intensity is also measured at a fourth location, or alternatively, a second light source is disposed at a third location to permit comparative intensity data to be collected. These data are useful in partially identifying the types of microorganisms present in the sample. In preferred embodiments, light emitting diodes are used as the light sources and multiplexed to a plurality of samples. These signals are either detected using photodetectors and demultiplexed, or are collected using fiber-optic light guides and fed to a photomultiplier tube which generates an intensity signal. In either embodiment, the intensity signal is preferably amplified, digitized and stored in a computer.
Abstract:
Optical analytical instruments to determine a physical parameter of a fluid, and methods of operation of such instruments, are shown. These employ a source of suitable optical radiation, a detector means, means defining a zone for the fluid, means defining an optical path from the radiation source through the fluid zone to the detector means, and reading and control circuitry. At least two readings of optical energy that has been influenced by the fluid are taken without there having occurred substantial change to the fluid. During one of the readings a filter of known absorbance is included in the optical path so that the respective reading represents a calibration reading. A calibration-value-determining means is constructed first to compare, effectively, the two readings to remove the effect of the fluid from the value of the calibration reading, second, to compare, effectively the residual value of the calibration reading to a known value based on the known absorbance of the filter, and, third, on the basis of the second comparison, to make a calibration adjustment based on values derived while the fluid sample remained unchanged in the fluid zone. Novel software implementations of the determinations are shown. Specific examples of instruments and methods implementing these features shown are a dual lamp, no-moving part in-line spectrophotometer, a no-moving part reflection colorimeter capable of on-line or off-line operation, a scatter or fluorescence detecting implementation and a turbidimeter.
Abstract:
A system for detecting optically-sensitive properties of sheet materials during manufacture includes a first group of bundles of optical fibers that convey light to selected transmitting locations adjacent one face of the sheet material. The system further includes a second group of bundles of optical fibers that collect and convey light transmitted through the sheet material to a light detector. The light detector measures the intensity of light received from each of the bundles of the second group to provide measurements of optically-sensitive properties of the sheet material at selected cross-directional locations.
Abstract:
An apparatus (100) and method for an alignment cell (108) are described herein. One apparatus includes a delivery fiber (112, 212, 312) and a delivery lens (232, 332) coupled to an optical bench (104), a mirror (234, 334) to receive light from the delivery fiber (112, 212, 312) through the delivery lens (232, 332) , wherein the received light is directed by the mirror (234, 334) to an ion trap (236, 336) on the trap surface, and a collection fiber (116, 216, 316) coupled to the optical bench (104) to receive light fluoresced from an ion in the ion trap (236, 336).
Abstract:
Certain examples described herein are directed to optical devices and systems that include first and second optical elements. In some examples, the first optical element may be configured to pass light received from an excitation source, and the second optical element may be optically coupled to the first optical element and may be configured to reflect incident light from the first optical element back to the first optical element and configured to pass the light reflected from the first optical element. Methods using the devices and systems are also described.
Abstract:
The present invention concerns a confocal chromatic device for inspecting the surface of an object (10) such as a wafer, comprising a plurality of optical measurement channels (24) with collection apertures (14) arranged for collecting the light reflected by the object (10) through a chromatic lens (13) at a plurality of measurement points (15), said plurality of optical measurement channels (24) comprising optical measurement channels (24) with an intensity detector (20) for measuring a total intensity of the collected light. The present invention concerns also a method for inspecting the surface of an object (10) such as a wafer comprising tridimensional structures (11).
Abstract:
A flow cell for a fluorescence spectrometer includes a flow channel to receive a flow of a liquid sample, an excitation light entrance window to receive excitation light from a light source, and an emission light exit window to transmit fluorescent emission light from the liquid sample in the flow channel from the flow cell. The excitation light entrance window and/or emission light exit window includes a waveguide including: a waveguide core formed of a core material; and a cladding medium surrounding a portion of the waveguide core, wherein the cladding medium has a refractive index less than the refractive index of the core material. The waveguide defines a portion of the flow channel.
Abstract:
Analyte arrays such as solutes in a slab-shaped gel following electrophoresis, and particularly arrays that are in excess of 3 cm square and up to 25 cm square and higher, are imaged at distances of 5 cm or less by either forming sub-images of the entire array and stitching together the sub-images by computer-based stitching technology, or by using an array of thin-film photoresponsive elements that is coextensive with the analyte array to form a single image of the array.
Abstract:
Apparatus for detecting optical radiation emitted from an array of spots on an object. The apparatus includes a plurality of light guides having respective input ends and output ends, with the input ends ordered in a geometrical arrangement corresponding to the array of the spots. Relay optics collect and focus the optical radiation from the object onto the input ends such that each input end receives the optical radiation from a corresponding one of the spots. Multiple detectors and each coupled to receive the optical radiation from an output end of a respective one of the light guides.