Abstract:
This disclosure is directed to systems and methods for fusing Raman data with biomarker data to identify a disease and/or the progression of the disease. The system disclosed herein may include an illumination source for generating interacted photons from a biological sample and a detector for detecting the interacted photons to generate a Raman data set. A processor is included to fuse the Raman data set with a biomarker data set to identify a disease and/or a disease progression. The instant disclosure further includes a method comprising illuminating a biological sample to generate interacted photons, and detecting the interacted photons to generate a Raman data set. A biomarker data set is obtained from the biological sample, and the Raman data set is fused with the biomarker data set to generate an index score. The index score correlates with one or more of a disease and a disease progression.
Abstract:
A system for widely spaced wavelength tunable diode laser absorption spectroscopy includes at least a first and second tunable diode laser generating laser light at a first and second wavelength, wherein laser light of the first and second wavelengths cannot co-propagate efficiently on the same single-mode fiber. A first fiber may be configured to carry light in the first wavelength, and a second fiber configured to carry light in the second wavelength. A fiber bundle may be formed from the distal ends of the first and second fibers stripped of their respective coatings, and arranged with their claddings adjacent to each other. One or more pitch heads are configured to project respective beams of laser light from the fiber bundle through a measurement zone. One or more catch heads located across the measurement zone receive the respective beams and direct the respective beams onto at least one sensor.
Abstract:
A microspectroscope (101) includes: a light source (11, 17); a plurality of light projecting optical fibers (12) that receive light from the light source (11, 17); a spectroscope (1); a plurality of light receiving optical fibers (22) for guiding received light to the spectroscope (1); and a confocal optical system (5) for causing each of a plurality of beams from the plurality of light projecting optical fibers (12) to be condensed and irradiated onto a sample, and forming images of a plurality of beams from a plurality of condensing points on the sample, respectively on the plurality of light receiving optical fibers (22).
Abstract:
An apparatus (100) and method for an alignment cell (108) are described herein. One apparatus includes a delivery fiber (112, 212, 312) and a delivery lens (232, 332) coupled to an optical bench (104), a mirror (234, 334) to receive light from the delivery fiber (112, 212, 312) through the delivery lens (232, 332) , wherein the received light is directed by the mirror (234, 334) to an ion trap (236, 336) on the trap surface, and a collection fiber (116, 216, 316) coupled to the optical bench (104) to receive light fluoresced from an ion in the ion trap (236, 336).
Abstract:
A method of monitoring blockage of a sight tube attached to a wall of a process chamber, the sight tube being operatively associated with a TDLAS optical head with a window between the sight tube and the TDLAS optical head. The method includes the steps of providing a photo sensor in the TDLAS optical head, the photo sensor being positioned to receive light emitted by a light emitting process within the process chamber. An emission signal produced by light emitted by the light emitting process within the process chamber being received by the photo sensor is monitored. A determination is made if the emission signal is degrading.
Abstract:
An analyte-detection system has an optical waveguide with first and second cladding layers adjacent a core; a light source coupled to provide light to the waveguide; a photodetector such as a metal- semiconductor- metal, vertical PIN, or horizontal PIN photodetectors, the photodetector having an absorber configured to detect light escaping from the waveguide through the first cladding layer; multiple, separate, photocurrent collectors, where each photocurrent collector collects current from a separate portion of the photodetector absorber; and at least one current-sensing amplifier for receiving photocurrent. The photodetector absorber is an undivided absorber region for multiple photocurrent collectors. Either separate amplifiers are provided for each of the multiple photocurrent collection lines, or multiplexing logic couples selected photocurrent collectors to amplifiers, while coupling unselected photocurrent collectors to a bias generator.
Abstract:
A clam-shell luminometer that, when closed, completely encloses an assay reaction mixture-containing reaction vessel and some portion of a reaction carousel or ring. The luminometer includes first and second portions that are coupled to each other, a photomultiplier tube, and plural fiber optic bundles that are optically coupled to the photomultiplier tube. First ends of the fiber optic bundles are disposed adjacent to the reaction vessel in the second portion so that the fiber optic bundles completely surround the perimeter or periphery of the reaction vessel.
Abstract:
An apparatus for detecting spectra in light emanating from chemical or biochemical reactions occurring in at least one reaction vessel (3) of a plurality of reaction vessels is disclosed. Each reaction vessel (3) has a receptacle portion having an emitting area from which light can emanate. The apparatus may include a masking element (5) having an array of apertures (6) through which light from each reaction vessel (3) can escape. A plurality of light waveguides (7) are arranged to guide light from the apertures (6) in the masking element (5) to a light detecting device (10) for detecting the spectra of light substantially simultaneously. One or more further light waveguides (31) may be provided for each reaction vessel (3) for directing excitation light from one or more excitation light sources (32, 33) to the reaction vessels (3).
Abstract:
Photovoltaic thin film quality control is obtained where the thin film is supported by a support and a section of the film is illuminated by a polychromatic or monochromatic illumination source. The source forms on the thin film an illuminated line. The light collected from discrete sampled points located on the illuminated line is transferred to a photo-sensitive sensor through an optical switch. The spectral signal of the light reflected, transmitted or scattered by the sampled points is collected by the sensor, processed and photovoltaic thin film parameters applicable to the quality control are derived e.g. thin film thickness, index of refraction, extinction coefficient, absorption coefficient, energy gap, conductivity, crystallinity, surface roughness, crystal phase, material composition and photoluminescence spectrum and intensity. Manufacturing equipment parameters influencing the material properties may be changed to provide a uniform thin film layer with pre-defined properties.