Abstract:
A spectroscopic measurement apparatus 1A comprises an integrating sphere 20 in which a sample S is located, a spectroscopic analyzer 30 dispersing the light to be measured from the sample S and obtaining a wavelength spectrum, and a data analyzer 50. The analyzer 50 includes an object range setting section which sets a first object range corresponding to excitation light and a second object range corresponding to light emission from the sample S in a wavelength spectrum, and a sample information analyzing section which determines a luminescence quantum yield of the sample S, determines a measurement value ¦ 0 of the luminescence quantum yield from results of a reference measurement and a sample measurement, and determines, by using factors ², ³ regarding stray light in the reference measurement, an analysis value ¦ of the luminescence quantum yield with the effect of stray light reduced by ¦ = ²¦ 0 +³. This realizes a spectroscopic measurement apparatus, a measurement method, and a measurement program which can reduce the effect of stray light generated in a spectrometer.
Abstract:
1.- A system (1) for analysing the chemical composition of a target material (100) comprising: [a] a laser system (2) [b] at least one scanner assembly for directing said laser beam (4) onto said target material (100) to produce luminous plasma on said target material (100) and to collect the light emitted thereafter, and [c] a spectral analyser (10). The scanner assembly further comprises at least [d] first light redirecting means (12) being configured such as to let the light pass therethrough when the light falls on one first side (14) of said first light redirecting means (12) and to redirect at least part of the light when the light falls on a second opposite side (16) opposite. Said first light redirecting means (12) are arranged in the system (1) to gather said light emitted by said plasma, collinearly with the laser beam directed onto said target material (100) and to redirect said light emitted by said plasma onto said first focusing means (6).
Abstract:
The wide-angle emission filter includes a base matrix, a photoresist, and a colorant. The base matrix has a flat shape and including a transparent material. The base matrix does not generate fluorescent light or phosphorescent light by an excitation light. The photoresist is disposed in the base matrix. The photoresist is fixed in a solid state through at least one method selected from the group consisting of thermal hardening, photo hardening, and drying. The colorant is disposed in the base matrix and includes light having a predetermined wavelength range. The wide-angle emission filter filters the excitation light regardless of an incident angle of the excitation light.
Abstract:
An instrument for scanning a specimen has a two-dimensional sensor array, the sensor array containing a mosaic color filter array or a scanning color filter array. The instrument can be operated in fluorescence or in brightfield. The scanning color filter array has the same color throughout each row with adjacent rows having different colors.
Abstract:
A controller (316) and method for establishing safe operation of an atomic emission spectrometer (AES) to analyze a sample (100) arranged on a sample holder (102) of the AES. The controller (316) is configured to receive a measurement of at least one test parameter indicative of the arrangement of the sample (100) on the sample holder (102). The at least one test parameter is then compared to a range of target values for that test parameter to determine if the sample (100) is arranged correctly on the sample holder (102). The test parameters may include an electrical parameter dependant on a current between a first and a second terminal at the sample holder (102), gas pressure in a gas chamber housing an electrode of the AES, or displacement of a portion of the sample holder.
Abstract:
A spectral measurement apparatus for irradiating a sample as a measurement object with excitation light and detecting light to be measured includes a light source generating the excitation light; an integrator having an input opening portion through which the excitation light is input, and an output opening portion from which the light to be measured is output; a housing portion arranged in the integrator and housing the sample; an incidence optical system making the excitation light incident to the sample; a photodetector detecting the light to be measured output from the output opening portion; and an analysis means calculating a quantum yield of the sample, based on a detection value detected by the photodetector, and the excitation light is applied to the sample so as to include the sample.
Abstract:
A multi-channel infrared spectrometer for detecting an infrared spectrum of light received from an object. The spectrometer comprises a wavelength converter system comprising a nonlinear material and having an input side and an output side. The wavelength converter system comprises at least a first up-conversion channel and a second up-conversion channel, and is arranged such that light traversing the wavelength converter system at different angles in the nonlinear material is imaged into different positions in an image plane. The first up- conversion channel is configurable for phase-matching infrared light in a first input wavelength range incident on the first side and light in a first output wavelength range output on the second side, and correspondingly, the second up-conversion channel is configurable for phase-matching infrared light in a second input wavelength range incident on the first side into light in a second output wavelength range output on the second side. The spectrometer further comprises a demultiplexer configured for demultiplexing light in the first up-conversion channel and light in the second up-conversion channel. The demultiplexer is located on the first side or the second side of the wavelength converter system. Finally, the spectrometer comprises a spatially resolved detector arranged in the image plane to detect light in the first output wavelength range and second output wavelength range output of the wavelength converter system.