Abstract:
A topographic head (100) for profilometry and AFM supports a central paddle (108) by coaxial torsion bars (104) projecting inward from an outer frame (102). A tip (118) projects from the paddle distal from the bars. The torsion bars include an integrated paddle rotation sensor (142). An XYZ stage (200) may carry the topographic head for X, Y and Z axis translation. The XYZ stage's fixed outer base (202) is coupled to an X-axis stage (204) via a plurality of flexures (206). The X-axis stage is coupled to a Y-axis stage (212) also via a plurality of flexures (214). One of each set of flexures includes a shear stress sensor (222). A Z-axis stage (238) may also be included to provide an integrated XYZ scanning stage. The topographic head's frame, bars and paddle, and the XYZ stage's stage-base, X-axis, Y-axis and Z-axis stages, and flexures are respectively monolithically fabricated by micromachining from a semiconductor wafer (252a, 252b, 262).
Abstract:
Mit Hilfe optischer oder mechanischer Meßverfahren können Werkstücke auf ihre Qualität hin überprüft werden. Im einfachsten Fall wird dabei zunächst ein Masterteil vermessen. Die Aussage über die Qualität des zu vermessenden Teils kann durch Vergleich (Differenzbildung) mit dem Masterteil erfolgen. Das zu vermessende Objekt wird vermessen. Die Meßwerte werden in einen modifizierten Assoziativspeicher (künstliches neuronales Netz) eingegeben und am Ausgang abgerufen (Recall). In den Gewichten des modifizierten Assoziativspeichers sind ein oder mehrere Masterteile in unterschiedlichen Positionen und Lagen gespeichert. Dadurch wird die gesamte Bandbreite der möglichen Variationen der Masterteile erfaßt. Am Ausgang des modifizierten Assoziativspeichers bleiben nur diejenigen Anteile der Meßdaten übrig, die den gespeicherten Masterteilen entsprechen. Fehler, also Abweichungen von diesen Masterteilen werden nicht weitergeleitet. Nach Differenzbildung zwischen dem gemessenen Teil und dem Recallergebnis bleiben nur die gesuchten Fehler übrig. Diese können dann mit Standardmethoden der Bildverarbeitung ausgewertet werden.
Abstract:
The invention concerns a device for measuring the dimensions of a three-dimensional surface structure, in particular folds in the human skin (9). The device has a transparent support plate (2) designed to hold initially liquid silicone material (3) to produce a silicone impression of the surface being examined. The device also has an analysis unit for analysing the surface structure of the impression. The invention calls for the support plate (2) to have a measurement zone (4) held at a given distance from the surface under examination (9), for the silicone material (3) which is introduced into the measurement zone to be uniformly coloured and for the support plate (2) to have at least one drainage channel (10) leading away from the measurement zone (4) for excess silicone material (3). Analysis of the silicone impression is carried out by determining the light absorbtion of the impression from light-intensity measurements.
Abstract:
An object of the present invention is to provide a reference sample for easily and accurately calibrating a region of recesses and projections of several ten angstroms to several angstroms for the observation of which an inter-atom force microscope displays its performance. The method of manufacturing reference samples according to the present invention, wherein an object to be measured and a probe are placed in an opposed state with a minute clearance left between the surface of the former and a free end of the latter, to manufacture a reference sample used to calibrate an amount of displacement measured with an inter-atom force microscope formed so as to convert an inter-atom force which works between the atoms constituting the object to be measured and probe into mechanical displacement, is characterized in that etching is carried out with an etching agent of an extremely low etching speed as a rate of etching a stepped portion of a pattern is accurately controlled.
Abstract:
A microfabricated microscope assembly (100) including a piezoelectric bimorph cantilever arm (102) mounted at one end to a first substrate (106). The free end of the cantilever arm has a tip (104) mounted thereto for scanning a scanned surface (110) mounted on a second substrate (114). The cantilever arm (102) and the substrate (112) are configured to carry out a predetermined write or read mode of operation, such as scanning tunneling microscopy or atomic force microscopy. The two substrates (106, 114) are spaced apart a fixed distance by spacer feet (120) which project from one of the substrates (106, 114) and which have their ends fixed to the surface of the other substrate by eutectic, anodic, or adhesive bonding. An array (100) of microfabricated microscope assemblies is formed using a plurality of individual assemblies (101). A number of different write/read modes of operation are accommodated, such as charge storage, molecular attachment, or magnetic domains.
Abstract:
A quality assurance of surface treatments, typically with shot peening, by analysis of substrate surface line traces is disclosed. In particular, line traces are created over the surface treated substrate. These line traces are filtered with a low pass filter to create relative maximums. The coordinates of the relative maximums are determined and the spatial distance between these coordinates are measured and recorded. The actual plastic upset depth of the surface treatment substrate is determined. The surface treatment is then adjusted, if necessary, based upon the values of these spatial distances and actual plastic upset depths..
Abstract:
A quality assurance of surface treatments, typically with shot peening, by analysis of substrate surface line traces is disclosed. In particular, line traces are created over the surface treated substrate. These line traces are filtered with a low pass filter to create relative maximums. The coordinates of the relative maximums are determined and the spatial distance between these coordinates are measured and recorded. The actual plastic upset depth of the surface treatment substrate is determined. The surface treatment is then adjusted, if necessary, based upon the values of these spatial distances and actual plastic upset depths..
Abstract:
Zur Prüfung plattenförmiger Werkstücke auf aus der Oberfläche herausragende Partikel (40) werden die Werkstücke (36) mittels eines beweglichen Haltekopfes (13, 42) auf eine Grundplatte (10) gelegt, und mittels im Haltekopf befindlicher Abtastelemente (26, 28, 30) wird die Lage der unteren Anlagefläche des Haltekopfes relativ zur oberen Fläche des auf der Oberfläche der Grundplatte aufliegenden Werkstücks ermittelt. Die hierbei von den Abtastelementen abgegebenen Signale kennzeichnen Vorhandensein und Lage von Partikeln auf der Werkstückfläche.