摘要:
A compact medium scanner (100) scans a surface (132) of a medium (134) with a beam of light (106). A medium transport mechanism (202, 206) advances the surface along a medium transport path through a scanning station. A light source (104) produces a collimated beam of light (106) that impinges upon a mirror plate (112) of a micromachined torsional scanner (108). A pair of coaxially aligned torsion bars (304) support the mirror plate (112) within the torsional scanner (108). A mirror-surface drive means (306, 312) rotates the mirror plate (112) about the torsion bars (304). A single reciprocation of the mirror plate (112) by the drive means (306, 312) deflects the beam of light (106) over a fan-shaped region having a virtually fixed vertex (128) on the mirror plate (112). Scanner optics (116, 122) direct the fan-shaped region beam of light (106) onto the surface (132) of the medium (134) then present in the scanning station to thereby scan across the medium (134) with the beam of light (106).
摘要:
An improved micromachined structure used for beam scanners, gyroscopes, etc. includes a reference member (154, 54) from which project a first pair of axially aligned torsion bars (156, 56). A first dynamic member (54 or 52), coupled to and supported from the reference member (154, 54) by the torsion bars (156, 56), oscillates in one-dimension about the torsion bar's axis. A second dynamic member (52) may be supported from the first dynamic member (54) by a second pair of axially aligned torsion bars (56) for two-dimensional oscillation. The dynamic members (54, 52) respectively exhibit a plurality of vibrational modes each having a frequency and a Q. The improvement includes means for altering a characteristic of the dynamic member's frequency and Q. Coupling between dynamic members (54, 52) permits altering the second dynamic member's frequency and Q by techniques applied to the first dynamic member (54). Some techniques disclosed also increase oscillation amplitude or reduce driving voltage, and also increase mechanical ruggedness of the structure.
摘要:
A topographic head (100) for profilometry and AFM supports a central paddle (108) by coaxial torsion bars (104) projecting inward from an outer frame (102). A tip (118) projects from the paddle distal from the bars. The torsion bars include an integrated paddle rotation sensor (142). An XYZ stage (200) may carry the topographic head for X, Y and Z axis translation. The XYZ stage's fixed outer base (202) is coupled to an X-axis stage (204) via a plurality of flexures (206). The X-axis stage is coupled to a Y-axis stage (212) also via a plurality of flexures (214). One of each set of flexures includes a shear stress sensor (222). A Z-axis stage (238) may also be included to provide an integrated XYZ scanning stage. The topographic head's frame, bars and paddle, and the XYZ stage's stage-base, X-axis, Y-axis and Z-axis stages, and flexures are respectively monolithically fabricated by micromachining from a semiconductor wafer (252a, 252b, 262).
摘要:
One aspect is a method for controllably attenuating the beam of light (108) coupled between incoming and outgoing optical fibers (106) by misaligning mirror surfaces (116a, 116b) included of an optical switching module (100). Misalignment of the mirror surfaces (116a and 116b) causes only a portion of the beam of light (108) propagating along the incoming optical fiber (106), which is less than when the light beam deflectors' mirror surfaces (116) are precisely aligned, to propagate along the outgoing optical fiber (108). Thus, the optical switching module (100) controllably attenuates the beam of light (108) coupled between the incoming and the outgoing optical fibers (106). Another aspect is a variable-optical-attenuator ('VOA') (212) that includes an optically reflective membrane (222) upon which the beam of light (108) impinges. Application of an electrostatic field between an adjacent electrode (228) and the membrane (222) deforms the membrane (222) thereby attenuating an impinging beam of light (108).
摘要:
A document transport for a scanner (100) has a flexible, elongated finger (226) disposed adjacent to a document (134), and a force applied to the finger (226) urges teeth (233) on the finger (226) into contact with the document (134) which urges the document (134) along a path through the scanner (100). A piezoelectric plate (222), which applies the force to the finger (226), requires only a small amount of electrical power. To traverse the scanner (100), a document (134) may also be manually fed along a guide (272). First and second speed-sensing detectors (276a and 276b), disposed along the path traversed by the document (134), permit the scanner (100) to determine a speed at which the manually fed document (134) traverses the scanner (100). To conserve electrical energy, the scanner (100) also includes a document-presence detector (274) for activating the scanner (100) when a document (134) to be scanned is present.