摘要:
A polypeptide, designated as “Streptococcus uberis Adhesion Molecule” (SUAM), and fragments of SUAM, prevent internalization and adherence of Streptococcus uberis and other streptococcal pathogens to cells. The SUAN polypeptide and fragments may be used diagnostically and therapeutically. Nucleic acid sequences encoding the SUAM polypeptide and fragments are included in the invention.
摘要:
The thermodynamics of self-assembling peptides may be altered to produce different morphologies. By altering environmental factors, initiation and propagation of self-assembly processes may be altered, thereby consequently altering the morphology of the resultant structure.
摘要:
The invention provides methods of screening for compounds that affect melanogenesis and the function of P protein in organisms, cells, or cell-free systems. The invention further relates to pharmacologic and cosmetic uses of methods of inhibiting melanogenesis, methods of activating melanogenesis, and compounds and pharmacologic compositions useful for the inhibition or activation of melanogenesis and, therefore, for lightening or darkening the pigmentation of cells and tissue, i.e., skin.
摘要:
This invention provides a method of determining a chromosomal breakpoint in a subject suffering from multiple myeloma which comprises steps of: (a) obtaining a DNA sample from the subject suffering from multiple myeloma; (b) determining whether there is J and C disjunction in the immunoglobulin heavy chain gene in the obtained DNA sample; (c) obtaining a genomic library having clones which contain genomic DNA fragments from the DNA sample which shows positive J and C disjunction; (d) selecting and isolating clones of the obtained library which show positive hybridization with a probe which is capable of specifically hybridizing with the C but not the J region of the immunoglobulin heavy chain gene; (e) preparing fluorescent probes from the genomic DNA fragments of the isolated clones from step (d); (f) hybridizing said fluorescent probes with metaphase chromosomes; and (g) determining the identity of the chromosomes which are capable of hybridizing to said fluorescent probes, wherein the identification of a chromosome other than chromosome 14 would indicate that the chromosomal breakpoint is between chromosome 14 and the identified chromosome, thereby determining a chromosomal breakpoint in a subject suffering from multiple myeloma. This invention also provides the identified gene altered by a chromosomal breakpoint and various uses thereof.
摘要:
Methods for transferring one or more proteins to a cell are disclosed. The protein or proteins to be transferred are in the form of a fusion protein, and contain at least one domain encoding for a protein or peptide having trans signaling and/or adhesion function. The fusion protein is transferred to a cell by binding to a lipidated protein, which has been incorporated into the cell membrane. In an additional aspect of the invention, methods of making fusion proteins having cis signaling capabilities, as well as the ability to bind with receptors on the cell's own surface, are provided. Fusion proteins incorporating GPI or a homing element, and a costimulator or inhibitor domain can also be directly transferred to the cell surface. Methods for using cells which have undergone protein transfer according to the present methods are also disclosed. This includes use in a cancer vaccine, use for treatment of cancer or autoimmune disease, and use in determining costimulator threshold levels.
摘要:
It is to provide a method and a kit for detecting the prognosis of cancer at high accuracy in a simple and rapid manner at low cost. The method is specifically a method for detecting the prognosis of cancer, at least including a step of detecting core-2 beta 1,6-acetylglucosaminyltransferase in a sample collected from a biological organism to examine the relationship between the results of the detection and the prognosis of cancer in the biological organism, wherein core-2 beta1,6-acetylglucosaminyltransferase is preferably core-2 beta1,6-acetylglucosaminyltransferase-I; the biological organism is preferably human body; and the sample is preferably a living tissue.