摘要:
The present invention relates to a Drosophila in vitro system which was used to demonstrate that dsRNA is processed to RNA segments 21-23 nucleotides (nt) in length. Furthermore, when these 21-23 nt fragments are purified and added back to Drosophila extracts, they mediate RNA interference in the absence of long dsRNA. Thus, these 21-23 nt fragments are the sequence-specific mediators of RNA degradation. A molecular signal, which may be their specific length, must be present in these 21-23 nt fragments to recruit cellular factors involved in RNAi. This present invention encompasses these 21-23 nt fragments and their use for specifically inactivating gene function. The use of these fragments (or chemically synthesized oligonucleotides of the same or similar nature) enables the targeting of specific mRNAs for degradation in mammalian cells, where the use of long dsRNAs to elicit RNAi is usually not practical, presumably because of the deleterious effects of the interferon response. This specific targeting of a particular gene function is useful in functional genomic and therapeutic applications.
摘要:
The present invention is directed, at least in part, to mice which express exogenous complement receptor type 1 (CR1) on red blood cells. The invention also pertains to genetic constructs encoding heterologous CR1 for expression on red blood cells. Methods of using the transgenic animals of the invention to identify and/or evaluate compositions that can reduce the concentration of an agent, e.g., a biologic agent, in the serum, circulation and/or tissues of a subject are also provided.
摘要:
This invention relates to a method of immunizing a vertebrate, comprising introducing into the vertebrate a DNA transcription unit which comprises DNA encoding a desired antigen or antigens. The uptake of the DNA transcription unit by a host vertebrate results in the expression of the desired antigen or antigens, thereby eliciting humoral or cell-mediated immune responses or both humoral and cell-mediated responses. The elicited humoral and cell-mediated response can provide protection against invention by pathogenic agents, provide an anti-tumor response, or provide contraception. The host can be any vertebrate, avian or mammal, including humans.
摘要:
The molded article (10) includes at least one compression molded plastic layer (60) having an inner surface and an outer surface thereof, and at least one plastic projection, as a boss or rib, extending from and bonded to the inner surface of the compression molded plastic layer. An outer plastic film is desirably bonded to the compression molded plastic layer and desirably compression molded therewith.
摘要:
This invention relates to DNA vaccines for eliciting an immune response and/or protective immunity in a vertebrate by introducing into the vertebrate the DNA vaccine which consists essentially of DNA encoding an antigen or antigens, e.g. capsid proteins or polypeptides, of rotavirus. The uptake of the DNA vaccine by a host vertebrate results in the expression of the capsid protein, thereby eliciting humoral or cell-mediated immune responses, or both, which can provide protection against infection and/or prevent clinically significant rotavirus-caused disease. In addition, the invention demonstrates that an internal viral antigen provides protective immunity in a host. The host can be any vertebrate, including birds, piglets, and humans.
摘要:
Disclosed are adenosine A2 receptor agonists for use in increasing the contractile performance of a compromised myocardium in a mammal. The agonists are administered in a therapeutically effective amount. Also disclosed are additional compounds, e.g., an adenosine transport inhibitor, an inhibitor of adenosine metabolism or an adenosine A1 receptor antagonist, that potentiate the beneficial effect of the adenosine A2 receptor agonist when administered in conjunction with the agonist.
摘要:
The oligoribonucleotide analogs of the invention, as exemplified in the figure, are relatively small, three-dimensional structures derived from larger parental RNA molecules. The analogs include a first nucleic acid structure including one or more nucleotide sequences that are derived from a region of parental RNA, wherein in its native state, the region binds to a ligand, e.g., an aminoglycoside, with a parental RNA ligand binding pattern, and a second nucleic acid structure including one or more nucleotide sequences combined with the first nucleic acid structure to form the analog and provide the analog with a conformation that binds the ligand with a ligand binding pattern that is substantially identical to the parental RNA ligand binding pattern. These analogs can be used to identify novel therapeutic compounds.
摘要:
The present invention provides high-throughput screening methods to identify inhibitors of Hepatitis B Virus (HBV) replication which act by inhibiting the ability of the pX protein of HBV to promote DNA binding of bZIP-containing transcription factors. The invention also provides methods for inhibiting replication of HBV by introducing into injected calls an inhibitor molecule that interferes with the binding of the pX protein to a bZIP domain in a bZIP-containing protein.
摘要:
N2-substituted alkylguanines and N2-substituted phenylguanine compounds which prevent recurrent herpes simplex infections are disclosed. By virtue of their ability to inhibit herpes virus thymidine kinase in vivo, such compounds will prevent, reduce the frequency of, or reduce the severity of recurrent HSV infections in humans.
摘要:
The invention is directed to constructs and compositions containing multimeric forms of nucleic acid. Multimeric nucleic acids comprise single-stranded nucleic acids attached via biotin to streptavidin and bound with a functional group. These constructs can be utilized in vivo to treat or identify diseased tissue or cells. Repeated administrations of multimeric nucleic acid compositions produce a rapid and specific amplification of nucleic acid constructs and their attached functional groups. For treatment purposes, functional groups may be toxins, radioisotopes, genes or enzymes. Diagnostically, labeled multimeric constructs may be used to identify specific targets in vivo or in vitro. Multimeric nucleic acids may also be used in nanotechnology and to create self-assembling polymeric aggregates such as membranes of defined porosity, microcircuits and many other products.