摘要:
An absorbent article is provided comprising a topsheet, a backsheet, and an absorbent core positioned between the topsheet and the backsheet, wherein the absorbent core comprises particles of superabsorbent polymer. An acquisition layer is positioned between the topsheet and the absorbent core for receiving and distributing fluid insults for absorption by the absorbent core. A temporary storage layer is positioned between the acquisition layer and the absorbent core, the temporary storage layer comprising a nonwoven fabric having a capacity to receive and temporarily hold the fluid insults in proximity to the absorbent core for a sufficient time for the fluid insults to be absorbed by the superabsorbent polymer in the absorbent core. In one advantageous embodiment, the acquisition layer has a calculated average pore size greater than 100 gm and the temporary storage layer has a calculated average pore size less than 100 µm.
摘要:
A spunbond nonwoven fabric useful as a topsheet is produced from polypropylene filaments including a high level of reclaimed polypropylene, while maintaining a product quality, including superior formation, comparable to that obtained when using 100 percent virgin polymer. The spunbond nonwoven fabric is made with multicomponent filaments having at least two different polymer components occupying different areas within the filament cross section, and wherein one of the polymer components comprises reclaimed polypropylene recovered from previously spun polypropylene fiber or webs comprised of previously spun polypropylene fiber. In a specific embodiment, the filaments are sheath-core bicomponent filaments and the reclaimed polypropylene is present in the core component. The core of the bicomponent filament can be comprised of up to 100 % reclaimed polypropylene.
摘要:
The present invention provides a composite nonwoven fabric with a superior combination of extensibility, tensile properties and abrasion resistance. The composite nonwoven fabric (10) comprises at least one layer containing multipolymer fibers, with a plurality of bonds (B) bonding the fibers together to form a coherent extensible nonwoven web (11). This coherent extensible nonwoven web (11) has a Taber surface abrasion value (rubber wheel) of greater than 10 cycles and an elongation at peak load in at least one of the machine direction or the cross-machine direction of at least 70 percent. A second extensible layer (12) is laminated to this coherent extensible nonwoven web (11) by an adhesive layer (13).
摘要:
A system and process is provided for producing spunbond nonwoven fabric. Two or more polymeric components are separately melted and are separately directed through a distribution plate configured so that the separate molten polymer components combine at a multiplicity of spinneret orifices to form filaments containing the two or more polymer components. Multicomponent filaments are extruded from the spinneret orifices into a quench chamber where quench air is directed from a first independently controllable blower and into contact with the filaments to cool and solidify the filaments. The filaments and the quench air are directed into and through a filament attenuator and the filaments are pneumatically attenuated and stretched. The filaments are directed from the attenuator into and through a filament depositing unit and are deposited randomly upon a moving continuous air-permeable belt to form a nonwoven web of substantially continuous filaments. Suction air from a second independently controllable blower beneath the air-permeable belt so is drawn through the depositing unit and through the air-permeable belt and web is then directed through a bonder for bonding the filaments to convert the web into a coherent nonwoven fabric.
摘要:
The present invention provides multicomponent fibers arranged in structured domains. At least one of the polymer components is formed of a multipolymer blend. The present invention also provides nonwoven fabrics formed of the multicomponent fibers, the fabrics having a superior combination of extensibility, tensile properties and abrasion resistance. A second layer can be laminated to this coherent extensible nonwoven web.
摘要:
An elastomeric laminated fabric which is elastic in the cross direction. The laminate includes an elastomeric film (2) having one or two nonwomen webs (4, 6) of carded thermoplastic staple fibers thermally point bonded thereto (11) using heated calendar rolls. The resulting laminated fabric is stretchable by at least 100 % in the cross direction without breaking for at least two cycles and recovers elastically. The fiber content of the nonwomen webs is at least 50 % high-elongation polyolefin staple fibers having a breaking strain of at least 400 %.
摘要:
A nonwoven fabric with UV stability and flame retardancy having at least one fabric layer. The fabric layer is made of a base resin, preferably polyolefinic, and a non-halogenated melt processable compound that is selected from the group consisting of N-alkyoxy amines and are combined into a homogeneous blend which is then either spunbonded or meltblown to form the fabric layer. A melt processable fluorochemical additive may also be combined into the homogeneous blend to provide liquid barrier properties to the fabric layer.
摘要:
The present invention provides a nonwoven fabric of a multilayer construction including a first fibrous web layer which defines one outer surface of the nonwoven fabric and a second fibrous web layer which defines the opposite outer surface of the fabric. The first fibrous web layer comprises bicomponent or biconstituent fibers which include both a relatively higher fusion point first polymer and a lower fusion point second polymer. The second fibrous web layer comprises fibers of the relatively higher fusion point first polymer. A plurality of fusion bonds serve to bond the fibers of the first web and the fibers of the second web to form a coherent multilayer fabric. The first and second fibrous webs may be bonded directly to one another by the fusion bonds. Alternatively, one or more intermediate layers may be located between the outer first and second fibrous webs. The first fibrous web layer is a 'bico-rich' layer containing from 10 to 100 percent by weight of the bicomponent or biconstituent fibers. In comparison with the first web, the second web is a 'bico-lean' layer and may be formed entirely of mono-component fibers, or from a mixture of bico- and mono-component fibers. If bico fibers are present, they are ina proportion significantly less than in the bico-rich layer. Consequently, the first web has a thermal fusing temperature which is less than that of the second web.