摘要:
An electrostatic quadrupole lens assembly (60) is provided for an ion implanter (10) having an axis (86) along which an ion beam passes, comprising: (i) four electrodes (84a-84d) oriented radially outward from the axis (86), approximately 90° apart from each other, such that a first pair of electrodes (84a and 84c) oppose each other approximately 180° apart, and a second pair of electrodes (84b and 84d) also oppose each other approximately 180° apart; (ii) a housing (62) having a mounting surface (64) for mounting the assembly (60) to the implanter, the housing at least partially enclosing the four electrodes (84a-84d); (iii) a first electrical lead (104) for providing electrical power to the first pair of electrodes (84a and 84c); (iv) a second electrical lead (108) for providing electrical power to the second pair of electrodes (84b and 84d); and (v) a plurality of electrically insulating members (92) formed of a glass-like material, comprising at least a first electrically insulating member for attaching the first pair of electrodes (84a and 84c) to the housing, and at least a second electrically insulating member for attaching the second pair of electrodes (84b and 84d) to the housing. The plurality of electrically insulating members (92) are preferably comprised of quartz (SiO 2 ), or a heat resistant and chemical resistant glass material such as Pyrex®. The members (92) resist accumulation of material such as graphite sputtered off of the electrodes (84a-84d) by the ion beam, thus reducing the occurrence of high voltage breakdown and electrical current breakdown.
摘要:
A method and system for in-process cleaning of an ion source (12) is provided. The ion source (12) comprises (i) a plasma chamber (22) formed by chamber walls (112, 114, 116) that bound an ionization zone (120); (ii) a source of ionizable dopant gas (66) and a first mechanism (68) for introducing said ionizable dopant gas into said plasma chamber; (iii) a source of cleaning gas (182) and a second mechanism (184) for introducing said cleaning gas into said plasma chamber; and (iv) an exciter (130) at least partially disposed within said chamber for imparting energy to said ionizable dopant gas and said cleaning gas to create a plasma within said plasma chamber. The plasma comprises disassociated and ionized constituents of said dopant gas and disassociated and ionized constituents of said cleaning gas. The disassociated and ionized constituents of said cleaning gas react with said disassociated and ionized constituents of said dopant gas to prevent formation of deposits of elements contained within said ionizable dopant gas on surfaces of said chamber walls. The cleaning gas may be, for example, nitrogen trifluoride (NF 3 ), and the ionizable dopant gas may be, for example, either phosphine (PH 3 ) or arsine (AsH 3 ). Mass flow controllers control the ratio of cleaning gas to ionizable dopant gas introduced into said plasma chamber, which is greater than 0:1 and preferably at least 3:1.
摘要:
An apparatus and method for providing a low energy, high current ion beam for ion implantation applications are disclosed. The apparatus includes a mass analysis magnet (114) mounted in a passageway (139, 202) along the path (129) of an ion beam, a power source (174) adapted to provide an electric field in the passageway (139, 202), and a magnetic device (170) adapted to provide a multi-cusped magnetic field in the passageway (139, 202), which may include a plurality of magnets (220) mounted along at least a portion of the passageway (139, 202). The power source (174) and the magnets (220) may cooperatively interact to provide an electron cyclotron resonance (ECR) condition along at least a portion of the passageway (139, 202). The multi-cusped magnetic field may be superimposed on the dipole field at a specified field strength in a region of the mass analyzer passageway to interact with an electric field of a known RF or microwave frequency for a given low energy ion beam. The invention further comprises a mass analyzer waveguide (250) adapted to couple the electric field to the beam plasma consistently along the length of the mass analyzer passageway (202) to thereby improve the creation of the ECR condition. The invention thus provides enhancement of beam plasma within a mass analyzer dipole magnetic field for low energy ion beams without the introduction of externally generated plasma. The invention further includes a method (300) of providing ion beam containment in a low energy ion implantation system, as well as an ion implantation system.
摘要:
An apparatus and method for providing a low energy, high current ion beam for ion implantation applications are disclosed. The apparatus includes a mass analysis magnet (114) mounted in a passageway (139, 202) along the path (129) of an ion beam, a power source (174) adapted to provide an electric field in the passageway (139, 202), and a magnetic device (170) adapted to provide a multi-cusped magnetic field in the passageway (139, 202), which may include a plurality of magnets (220) mounted along at least a portion of the passageway (139, 202). The power source (174) and the magnets (220) may cooperatively interact to provide an electron cyclotron resonance (ECR) condition along at least a portion of the passageway (139, 202). The multi-cusped magnetic field may be superimposed on the dipole field at a specified field strength in a region of the mass analyzer passageway to interact with an electric field of a known RF or microwave frequency for a given low energy ion beam. The invention further comprises a mass analyzer waveguide (250) adapted to couple the electric field to the beam plasma consistently along the length of the mass analyzer passageway (202) to thereby improve the creation of the ECR condition. The invention thus provides enhancement of beam plasma within a mass analyzer dipole magnetic field for low energy ion beams without the introduction of externally generated plasma. The invention further includes a method (300) of providing ion beam containment in a low energy ion implantation system, as well as an ion implantation system.