摘要:
A method for producing an aromatic hydrocarbon or a mixture of aromatic hydrocarbons from a low molecular hydrocarbon or a mixture of low molecular hydrocarbons, wherein, in a first step, a low molecular hydrocarbon or a mixture of low molecular hydrocarbons is converted to a mixture of aromatic hydrocarbons by way of a catalytic dehydroaromatization reaction with hydrogen as a byproduct, separating the mixture of aromatic hydrocarbons from hydrogen and nonaromatic hydrocarbons in a second step, and, in a third step, feeding the mixture of aromatic hydrocarbons into an aromatic hydrocarbons separation unit, e.g. into the aromatic hydrocarbons separation unit of a catalytic reforming plant, in particular into the aromatic hydrocarbons separation unit of a hydrocarbon steamcracker plant.
摘要:
The present invention concerns a process for preparing cyclohexane from methylcyclopentane (MCP) and benzene. In the present invention, MCP and benzene are constituents of a hydrocarbon mixture (KG1) also including dimethylpentanes (DMP), optionally cyclohexane and optionally at least one compound (low boiler) selected from non-cyclic C 5 -C 6 alkanes and cyclopentane. First, benzene is reacted in a hydrogenation step to give cyclohexane (present in the hydrocarbon mixture (KG2)), while MCP is isomerized to cyclohexane in the presence of a catalyst, preferably an acidic ionic liquid. After the hydrogenation but before the isomerization, the dimethylpentanes (DMP) are removed, and initially the cyclohexane present in the hydrocarbon mixture (KG2) is removed together with DMP. This pre-isomerization cyclohexane can be freed of DMP again in a downstream step of rectification and isolated and/or returned to the cyclohexane preparation process. If the hydrocarbon mixture (KG1) comprises low boilers, they can be removed between DMP removal and MCP isomerization. Following the isomerization comes the isolation of the cyclohexane, with optional recycling of unisomerized MCP and any low boilers. The hydrocarbon mixture (KG1) preferably includes cyclohexane and/or low boilers, and so low-boiler removal between DMP removal before isomerization is a preferred operation. Also preferred is an additional removal of DMP from the cyclohexane - that is, the cyclohexane fraction arising from the benzene hydrogenation and possibly forming part of the starting mixture (KG1) is isolated and hence recovered.
摘要:
A process for preparing an aluminum-free boron containing zeolitic material comprising the framework structure MWW (BMWW), comprising (a) hydrothermally synthesizing the BMWW from a synthesis mixture containing water, a silicon source, a boron source, and an MWW template compound obtaining the BMWW in its mother liquor, the mother liquor having a pH above 9; (b) adjusting the pH of the mother liquor, obtained in (a) and containing the BMWW, to a value in the range of from 6 to 9; (c) separating the BMWW from the pH-adjusted mother liquor obtained in (b) by filtration in a filtration device.
摘要:
The present invention relates to a method for producing cyclohexane from benzene and/or methylcyclopentane (MCP) by hydrogenation or isomerisation. Prior to cyclohexane production, the dimethylpentanes (DMP) are separated in a distillation device (D1) from a hydrocarbon mixture (KG1) which contains DMP in addition to benzene and/or MCP. If cyclohexane is already present in the hydrocarbon mixture (KG1), the cyclohexane is separated initially with DMP in conjunction with benzene and/or MCP. The already present cyclohexane can be re-separated from DMP in a subsequent distillation step and can be recycled into the process in order to produce cyclohexane.