摘要:
A light-emitting device is provided with getter material (58) that can readily be distributed in a relatively uniform manner across the device's active light-emitting portion. An electron-emitting device is similarly provided with getter material (112, 110/112, 128, 132, and 142) that can readily be distributed relatively uniformly across the active electron-emitting portion of the device. Techniques such as thermal spraying, angled physical deposition, and maskless electrophoretic/dielectrophoretic deposition can be utilized in depositing the getter material.
摘要:
Methods and structures are provided which reduce charge build up on spacer walls in a flat panel display. In one embodiment, the order of activating the electron emitting elements is modified such that the electron emitting elements adjacent to the spacers are activated before the electron emitting elements which charge thespacers (501, 502, 503) to an undesirable level. In another embodiment, face electrodes (501a, 502a, 503a) which are located on the surface of the spacer are connected to a common bus (504), thereby distributing the charge built up on any particular spacer. The common bus (504) can further be connected to a capacitor (1010) which is located either inside or outside the active region of the flat panel display, thereby increasing the charging time constant of the spacers. The capacitor can be connected to ground or to a high voltage supply (1011). In another embodiment, the charging time constant of the spacers is increased by fabricating the spacers from a material having a high dielectric constant, such as dispersion of aluminum oxide, chromium oxide and titanium oxide, wherein the titanium oxide makes up approximately four percent of the spacer material.
摘要:
A method for forming a three-dimensional multi-level conductive matrix structure for a flat panel display device. In one embodiment, the present invention forms first pixel separating structures across a surface of a faceplate of a flat panel display. The first pixel separating structures separate adjacent first sub-pixel regions. In this embodiment, the first pixel separating structures are formed by applying a first layer of photo-imagable material across the surface of the faceplate. Next, portions of the first layer of photo-imagable material are removed to leave regions of the first layer of photo-imagable material covering respective first sub-pixel regions. Then, a first layer of conductive material is applied over the surface of the faceplate such that the first layer conductive material is disposed between the aforementioned regions of the first layer of photo-imagable material. The present invention then removes the regions of the first layer of photo-imagable material leaving only first pixel separating structures formed of the first layer of conductive material, disposed between the first sub-pixel regions. The present invention performs similar steps in order to form second pixel separating structures between the second sub-pixel regions. The second pixel separating structures are formed substantially orthogonally oriented with respect to the first pixel separating structures and, in the present embodiment, have a different height than the first pixel separating structures. In so doing, a three-dimensional multi-level conductive matrix structure is formed.
摘要:
Methods and structures are provided which support spacer walls (100) in a position which facilitates installation of the spacer walls (100) between a faceplate and backplate of a flat display. In one embodiment, spacer feet (111, 112) are formed at the opposing ends of the spacer wall. Tacking electrodes can be provided on the faceplate to assert an electrostatic force on the spacer feet (111, 112), thereby holding the spacer feet in place during installation of the spacer wall. The spacer wall can be mechanically and/or thermally expanded prior to attaching both ends of the spacer wall to the faceplate. The spacer wall is then allowed to contract, thereby introducing tension into the spacer wall which tends to straighten any inherent wavines in the spacer wall. Alternatively, spacer clips can be clamped onto opposing ends of a spacer wall to support the spacer wall during installation. The spacer clips can provide electrical connections to face electrodes located on the spacer wall.