摘要:
A sensor package includes a magnetic field sensor and a corruption detection and reset subsystem. The magnetic field sensor has a magnetic sense element and a ferromagnetic structure characterized by a baseline magnetic state. The subsystem includes a detector element, a processor, and current carrying structure positioned in proximity to the ferromagnetic structure. Methodology performed by the subsystem entails detecting at the detector element an altered magnetic state of the ferromagnetic structure, where the altered magnetic state differs from the baseline magnetic state. Methodology further entails determining, at the processor, when a reset action is needed in response to the altered magnetic state and applying a reset magnetic field to the ferromagnetic structure to reset the ferromagnetic structure from the altered magnetic state to the baseline magnetic state.
摘要:
A system for programming integrated circuit (IC) dies formed on a wafer includes a magnetic field transmitter that outputs a digital test program as a magnetic signal. At least one digital magnetic sensor (e.g., Hall effect sensor) is formed with the IC dies on the wafer. The digital magnetic sensor detects and receives the magnetic signal. A processor formed on the wafer converts the magnetic signal to the digital test program and the digital test program is stored in memory on the wafer in association with one of the IC dies. The magnetic field transmitter does not physically contact the dies, but can flood an entire surface of the wafer with the magnetic signal so that all of the IC dies are concurrently programmed with the digital test program.
摘要:
A device (20) includes sensors (30, 32, 34) that sense different physical stimuli. Fabrication (90) entails forming (92) a device structure (22) to include the sensors and coupling (150) a cap structure (24) with the device structure so that the sensors are interposed between the cap structure and a substrate layer (28) of the device structure. Fabrication (90) further entails forming ports (38, 40) in the substrate layer (28) such that one port (38) exposes a sense element (44) of the sensor (30) to an external environment (72), and another port (40) temporarily exposes the sensor (34) to the external environment. A seal structure (26) is attached to the substrate layer (28) such that one port (40) is hermetically sealed by the seal structure and an external port (46) of the seal structure is aligned with the port (38).
摘要:
A method of forming a MEMS device (10) includes forming a sacrificial layer (34) over a substrate (12). The method further includes forming a metal layer (42) over the sacrificial layer (34) and forming a protection layer (44) overlying the metal layer (42). The method further includes etching the protection layer (44) and the metal layer (42) to form a structure (56) having a remaining portion of the protection layer formed over a remaining portion of the metal layer. The method further includes etching the sacrificial layer (34) to form a movable portion of the MEMS device, wherein the remaining portion of the protection layer protects the remaining portion of the metal layer during the etching of the sacrificial layer (34) to form the movable portion of the MEMS device (10).
摘要:
A method of forming a MEMS device (10) includes forming a sacrificial layer (34) over a substrate (12). The method further includes forming a metal layer (42) over the sacrificial layer (34) and forming a protection layer (44) overlying the metal layer (42). The method further includes etching the protection layer (44) and the metal layer (42) to form a structure (56) having a remaining portion of the protection layer formed over a remaining portion of the metal layer. The method further includes etching the sacrificial layer (34) to form a movable portion of the MEMS device, wherein the remaining portion of the protection layer protects the remaining portion of the metal layer during the etching of the sacrificial layer (34) to form the movable portion of the MEMS device (10).