Abstract:
A method of forming a MEMS device (10) includes forming a sacrificial layer (34) over a substrate (12). The method further includes forming a metal layer (42) over the sacrificial layer (34) and forming a protection layer (44) overlying the metal layer (42). The method further includes etching the protection layer (44) and the metal layer (42) to form a structure (56) having a remaining portion of the protection layer formed over a remaining portion of the metal layer. The method further includes etching the sacrificial layer (34) to form a movable portion of the MEMS device, wherein the remaining portion of the protection layer protects the remaining portion of the metal layer during the etching of the sacrificial layer (34) to form the movable portion of the MEMS device (10).
Abstract:
New compositions and methods of using those compositions as protective layers during the production of semiconductor and MEMS devices are provided. The compositions comprise a cycloolefin copolymer dispersed or dissolved in a solvent system, and can be used to form layers that protect a substrate during acid etching and other processing and handling. The protective layer can be photosensitive or non-photosensitive, and can be used with or without a primer layer beneath the protective layer. Preferred primer layers comprise a basic polymer in a solvent system.
Abstract:
A method for manufacturing a multi-layer substrate structure comprising obtaining a first and second wafer, such as two silicon wafers, wherein at least one of the wafers may be optionally provided with a material layer such as an oxide layer (302, 404), forming a cavity on the bond side of the first wafer (306, 406), depositing, preferably by ALD (Atomic Layer Deposition), a material layer, such as alumina layer, on either wafer arranged so as to at least in places face the other wafer and cover at least portion of the cavity of the first wafer, such as bottom, wall and/or edge thereof, and enable stopping etching, such as plasma etching, into the underlying material (308, 408), and bonding the wafers provided with at least the aforesaid ALD layer as an intermediate layer together to form the multi-layer semiconductor substrate structure (310, 312). A related multi-layer substrate structure is presented.
Abstract:
A method of forming a membrane with nanometer scale pores includes forming a sacrificial etch stop layer on a substrate. A base layer is constructed on the sacrificial etch stop layer. Micrometer scale pores are formed within the base layer. A sacrificial base layer is built on the base layer. The sacrificial base layer is removed from selected regions of the base layer to define nanometer scale pores within the base layer. The resultant membrane has sub-fifty nanometer pores formed within it.
Abstract:
The invention relates to a method for producing a micromechanical component (100) that comprises at least one cavity (110) and one functional element (12) at least partially disposed in said cavity (110) and/or one functional layer (13a, 13b, 13c) at least partially disposed therein. The invention further relates to a micromechanical component (100) produced according to the inventive method. The aim of the invention is to reduce the production costs for such a micromechanical component. To this end, the functional element (12) and/or the functional layer (13a, 13b, 13c) is provided with a first protective layer (41; 71) at least in a zone that adjoins a first sacrificial coating (52) that temporarily occupies the space of the cavity (22) subsequently formed in one or more etching steps. The material of the first protective layer (41) is selected in such a manner that at least one etching method and/or etching agent etching or dissolving the first sacrificial coating (52) does substantially not corrode the first protective layer (41; 71) or corrodes it only at a reduced etching rate in relation to the first sacrificial coating (52).
Abstract:
The method is based on the use of a silicon carbide mask for removing a sacrificial region. In case of manufacture of integrated semiconductor material structures, the following steps are performed: forming a sacrificial region (6) of silicon oxide on a substrate (1) of semiconductor material; growing a pseudo-epitaxial layer (8); forming an electronic circuit (10-13, 18); depositing a silicon carbide layer (21); defining photolithographycally the silicon carbon layer so as to form an etching mask (23) containing the topography of a microstructure (27) to be formed; with the etching mask (23), forming trenches (25) in the pseudo-epitaxial layer (8) as far as the sacrificial region (6) so as to laterally define the microstructure; and removing the sacrificial region (6) through the trenches (25).
Abstract:
A method for producing a semiconductor device is capable of solving problems related to dicing a metal thin film used for electrochemical etching. According to the method, an n type epitaxial thin layer (36) is formed on a p type single-crystal silicon wafer (35). An n + type diffusion layer (38) is formed in a scribe line area on the epitaxial layer (36). An n + type diffusion layer (39) is formed in an area of the epitaxial layer (36) which corresponds to the predetermined part of the wafter (35). Aluminum film (40, 41) is formed over the diffusion layers (38, 39), respectively. The aluminum film (40) has a clearance (65) for passing a dicing blade (66). Predetermined parts of the wafer (35) are electrochemically etched by supplying electricity through the aluminum film (40), the diffusion layers (38) and (39), to leave predetermined parts of the epitaxial layer (36). The wafer (35) is diced into chips along the scribe line area. Each of the chips forms the semiconductor device. The electrochemical etching of the wafer (35) is carried out after the formation of the aluminum film (40, 41), by immersing the wafer (35) in a KOH aqueous solution (76) and by supplying electricity through the aluminum film (40). The electrochemical etching is terminated at an inflection point where an etching current inflects to a constant level from a peak level. During the electrochemical etching, the diffusion layer (39) reduces horizontal resistance in the epitaxial layer (36), so that the etched parts receive a sufficient potential to perform the etching.
Abstract:
The invention provides a single mask, low temperature reactive ion etching process for fabricating high aspect ratio, released single crystal microelectromechanical structures independent of crystal orientation. A dielectric mask (12) on a single-crystal substrate (154) is patterned to define isolating trenches. A protective conformal layer (28) is applied to the resultant structure. The conformal layer (28) on the floor of the trenches is removed and a second etch deepens the trench to expose the mesa walls which are removed during the release step by isotropic etching. A metal layer (44) is formed on the resultant structure providing opposed plates (156) and (158) of a capacitor. The cantilever beam (52) with the supporting end wall (152) extends the grid-like structure (150) into the protection of the deepened isolation trenches (54). A membrane can be added to the released structures to increase their weight for use in accelerometers, and polished for use as movable mirrors.