Abstract:
Thermally conductive compositions containing spherical boron nitride filler particles having an average aspect ration of less than 2.0 in a polymer matrix.
Abstract:
A curable epoxy formulation is provided in the present invention. The formulation comprises an epoxy monomer, an organofunctionalized colloidal silica having a particle size in a range between about 2 nanometers and about 20 nanometers, and optional reagents wherein the organofunctionalized colloidal silica substantially increases the glass transition temperature of the epoxy formulation. Further embodiments of the present invention include a semiconductor package comprising the aforementioned curable epoxy formulation.
Abstract:
Thermal interface compositions (10) contain both non-electrically conductive micronsized fillers (18) and electrically conductive nanoparticles (20) blended with a polymer matrix (16). Such compositions increase the bulk thermal conductivity of the polymer composites as well as decrease thermal interfacial resistances that exist between thermal interface materials and the corresponding mating surfaces. Such compositions are electrically non-conductive. Formulations containing nanoparticles (20) also show less phase separation of micron-sized particles (18) than formulations without nanoparticles (20). Methods for increasing heat transfer include using such compositions between heat producing components (12) and heat sinks (14). Electronic components utilizing such compositions are also disclosed.
Abstract:
An underfill composition with enhanced adhesion and improved resistance to cracking comprising an epoxy resin in combination with a difunctional siloxane anhydride epoxy hardener and optional reagents. In some embodiments, the epoxy resin includes a functionalized colloidal silica filler having a particle size ranging from about I nm to about 500 nm. The difunctional siloxane anhydride epoxy hardener can optionally be combined with liquid anhydride epoxy hardeners. Cure catalysts, hydroxyl-containing monomers, adhesion promoters, flame retardants and defoaming agents may also be added to the composition. Further embodiments of the present disclosure include packaged solid state devices comprising the underfill compositions.
Abstract:
Thermal interface compositions (10) contain both non-electrically conductive micronsized fillers (18) and electrically conductive nanoparticles (20) blended with a polymer matrix (16). Such compositions increase the bulk thermal conductivity of the polymer composites as well as decrease thermal interfacial resistances that exist between thermal interface materials and the corresponding mating surfaces. Such compositions are electrically non-conductive. Formulations containing nanoparticles (20) also show less phase separation of micron-sized particles (18) than formulations without nanoparticles (20). Methods for increasing heat transfer include using such compositions between heat producing components (12) and heat sinks (14). Electronic components utilizing such compositions are also disclosed.
Abstract:
Thermal interface compositions (20) contain filler particles possessing a maximum particle size less than 25 microns in diameter blended with a polymer matrix. Such compositions enable lower attainable bond line thickness, which decreases in-situ thermal resistances that exist between thermal interface materials (20) and the corresponding mating surfaces.