Abstract:
Disclosed is a process for the production of 1-chloro-3,3,3-trifluoropropene (HCFO-1233zd) which includes reacting a propane feedstock comprising tetrachlorofluoropropanes, trichlorodifluoropropanes, dichlorotrifluoropropanes, or a mixture thereof, in the presence of a solid catalyst. The process generally comprises the following four steps: (i) providing a propane feedstock comprising trichlorodifluoropropanes and dichlorotrifluoropropanes, (ii) reacting the feedstock in a vapor phase reactor in the presence of HF and in the presence of a solid catalyst under conditions effective to form a product stream comprising HCFO-1233zd and unconverted starting materials, (iii) recovering or removing HCl and HF, and (iv) isolating HCFO-1233zd(E), HCFO-1233zd(Z), or both.
Abstract:
Provided are azeotropic or azeotrope-like mixtures of 1,3,3-trichloro-1,1-difluoro-propane (HCFC-242fa) and hydrogen fluoride. Such compositions are useful as a feed stock or intermediate in the production of HFC-245fa and HCFO-1233zd.
Abstract:
A process is described wherein otherwise unusable by-products from a process for the manufacture of trans HCFO-1233zd(E) are converted to a valuable product by introducing them into a process for the production of HFC-245fa. The process includes the catalytic hydrofluorination of a reaction mixture comprising the HCFO-1233zd production by-products.
Abstract:
Disclosed is a process in which the fluorination of an organic reactant comprising 1,1,1,3,3-pentachloropropane (240fa) with anhydrous HF is conducted in the presence of an effective amount of a phase-transfer catalyst which facilitates the reaction between these incompatible reaction components to produce 1-chloro-3,3,3-trifluoro-propene (1233zd). Other organic reactant materials include 1,1,3,3-tetrachloropropene (HCO-1230za), 1,3,3,3-tetrachloropropene (HCO-1230zd), and various mixtures with or without 240fa.
Abstract:
wherein the HC1 generated during these steps is scrubbed with water to form an acid solution and the organic components are scrubbed with a caustic solution and then dried before further processing.
Abstract:
Disclosed are methods used to remove HF from a fluorocarbon containing stream, thereby forming a final aqueous HF solution having both a high HF concentration and low dissolved organic content.
Abstract:
A multi-stage, multi-tube, shell-and-tube reactor which contains reaction zones and interstage temperature control (cooling/heating) zones in series. The reactor has at least two types of zones which both contribute to removing or supplying heat to the system depending on the system's need. The reactor will have a group of reaction zones which contain tubes packed with catalyst to progress the reaction and remove or supply heat simultaneously. There are also a number of interstage temperature control (cooling/heating) zones which are designed to supply or remove heat to or from the system. The positioning, number, and design of the zones will depend on the amount of temperature control desired and exothermic or endothermic nature of the processes to be conducted in the reactor.
Abstract:
Disclosed is a reactor and agitator useful in a high pressure process for making 1-chloro-3,3,3-trifluoropropene (1233zd) from the reaction of 1,1,1,3,3-pentachloropropane (240fa) and HF, wherein the agitator includes one or more of the following design improvements: (a) double mechanical seals with an inert barrier fluid or a single seal; (b) ceramics on the rotating faces of the seal; (c) ceramics on the static faces of seal; (d) wetted o-rings constructed of spring-energized Teflon and PTFE wedge or dynamic o-ring designs; and (e) wetted metal surfaces of the agitator constructed of a corrosion resistant alloy.
Abstract:
A process for the manufacture of 1-chloro-3,3,3-trifluoropropene (HCFC-1233zd) at commercial scale from the reaction of HCC-240 and HF is disclosed. In one embodiment, HCC-240fa and HF are fed to a reactor operating at high pressure. Several different reactor designs useful in this process include; a stirred-tank reactor (batch and/or continuous flow); a plug flow reactor; a static mixer used as a reactor; at least one of the above reactors operating at high pressure; optionally combined with a distillation column running at a lower pressure; and combinations of the above; and/or with a distillation column. The resulting product stream consisting of 1233zd, HCl, HF, and other byproducts is partially condensed to recover HF by phase separation. The recovered HF phase is recycled to the reactor. The HCl is scrubbed from the vapor stream and recovered as an aqueous solution. The remaining organic components including the desired HCFC-1233zd are scrubbed, dried and distilled to meet commercial product specifications.