摘要:
A method for selectively depositing a plurality of metal layers on a substrate. The method includes the steps of depositing at least one layer of blanket metal (16) on a surface (10) of a substrate, building a lift-off stencil over the blanket metal, depositing at least one layer of redundant metal (24) over the lift-off stencil, depositing a first etch-resistant barrier (26) over the redundant metal, removing the lift-off stencil and the overlying layers of redundant metal and the etch-resistant barrier, depositing a second etch-resistant barrier (28) over the blanket metal and the first etch-resistant barrier, and then reactive ion etching (RIE) the second etch-resistant barrier so as to expose the blanket metal (16) and at least partially remove the second etch-resistant barrier from the first etch-resistant barrier. A final step of the method includes etching the blanket metal (24). Also disclosed is a metallurgical structure for a packaging substrate. The metallurgical structure includes layers of blanket metal and redundant metal. The redundant metal has an electrically isolating coating on its sides but not on its top surface, thereby facilitating the electrical contact of the redundant metal with the electrical component.
摘要:
A process is described which achieves self-aligned contacts and electrodes (42, 44, 46) having very close spacing in integrated circuit devices by use of a pattern of dielectric material (30) having a thickness in the order of a micrometer or less. A pattern of recessed oxide isolation (32) between device areas in the substrate (10) is also self-aligned by this process. The result is a substantial planar integrated circuit structure. The process is applicable to either bipolar transistor integrated circuits or MOS field effect transistor integrated circuits.
摘要:
The method supplies self-aligned metal to silicon contacts and sub-micron contact-to-contact and metal-to-metal spacing in the Integrated Injection Logic (I 2 L) or Merged Transistor Logic (MTL) technology. The insulation between the contacts and the metal is a pattern of dielectric material (24, 26, 30) having a thickness dimension in the order of a micron or less. The method involves providing a silicon body (10, 12) and then forming a first insulating layer (16) on the silicon body. This layer is removed in areas designated to contain integrated injection logic devices. A layer (20) of highly doped polycrystalline silicon is formed thereover. The conductivity of the polycrystalline silicon is opposite to that of the silicon body. Openings are made in the polycrystalline I silicon layer (20) by reactive ion etching which results in the structure having substantially horizontal and vertical surfaces. The openings are formed in areas designated to be the base of the lateral injector transistor of the integrated circuit. A second insulating layer (24, 26, 30) is then formed on both the substantially horizontal surfaces and substantially vertical surfaces. Reactive ion etching of this second insulating layer (24, 26, 30) substantially removes the horizontal layers and provides a narrow dimensioned dielectric pattern of regions on the silicon body. The base of the lateral injector transistor is formed through the openings of the polycrystalline silicon layer (20). The structure is annealed to fully form the base of the transistor and to drive into the silicon body the opposite type impurities from the polycrystalline silicon layer (20) to thereby form the base regions for the vertical transistors of the integrated injection logic circuit. Additional openings and narrow dimensioned dielectric patterns are made in the polycrystalline silicon layer where the collector of the vertical transistor is to be formed. Finally the structure is contacted and planarized.
摘要:
A method for forming integrated circuits having a pattern of narrow dimensioned dielectric regions and, more particularly self-aligned metal process is described which achieves self-aligned metal to silicon contacts and sub- micron contact-to-contact and metal-to-metal spacing. The insulation between the contacts and the metal is a pattern of dielectric material having a thickness dimension in the order of a micron or less. The metal and dielectric structure is substantially planar. The method for forming integrated circuits with this structure involves providing a silicon body (50, 51) and then forming a first insulating layer (52) on a major surface of the silicon body. A layer of polycrystalline silicon (53) is formed thereover. Openings are made in the polycrystalline silicon layer by reactive ion etching which results in the structure having substantially horizontal surfaces and substantially vertical surfaces. A second insulating layer (55) is then formed on both the substantially horizontal surfaces and substantially vertical surfaces. Reactive ion etching of this second insulating layer substantially removes the horizontal layers and provides a narrow dimensioned dielectric pattern of regions (56) on the major surface of the silicon body (50). The remaining polycrystalline silicon layer (53) is then removed by etching to leave the narrow dimensioned regions (56) on the major surface of the silicon body. A conductive layer is blanket deposited over the narrow dimensioned regions and areas in between. A blanket layer of a plastic material over the conductive layer to planarize the surface is accomplished. Reactive ion etching the plastic material and the conductive layer is continued until the tops of the narrow dimensioned regions (56) are reached leaving the structure of patterns (59 to 64) of metal filling the regions between the pattern of dielectric material having a thickness dimension in the order of a micron or less.
摘要:
A method for forming integrated circuits having a pattern of narrow dimensioned dielectric regions and, more particularly self-aligned metal process is described which achieves self-aligned metal to silicon contacts and sub- micron contact-to-contact and metal-to-metal spacing. The insulation between the contacts and the metal is a pattern of dielectric material having a thickness dimension in the order of a micron or less. The metal and dielectric structure is substantially planar. The method for forming integrated circuits with this structure involves providing a silicon body (50, 51) and then forming a first insulating layer (52) on a major surface of the silicon body. A layer of polycrystalline silicon (53) is formed thereover. Openings are made in the polycrystalline silicon layer by reactive ion etching which results in the structure having substantially horizontal surfaces and substantially vertical surfaces. A second insulating layer (55) is then formed on both the substantially horizontal surfaces and substantially vertical surfaces. Reactive ion etching of this second insulating layer substantially removes the horizontal layers and provides a narrow dimensioned dielectric pattern of regions (56) on the major surface of the silicon body (50). The remaining polycrystalline silicon layer (53) is then removed by etching to leave the narrow dimensioned regions (56) on the major surface of the silicon body. A conductive layer is blanket deposited over the narrow dimensioned regions and areas in between. A blanket layer of a plastic material over the conductive layer to planarize the surface is accomplished. Reactive ion etching the plastic material and the conductive layer is continued until the tops of the narrow dimensioned regions (56) are reached leaving the structure of patterns (59 to 64) of metal filling the regions between the pattern of dielectric material having a thickness dimension in the order of a micron or less.
摘要:
A process is described which achieves self-aligned contacts and electrodes (42, 44, 46) having very close spacing in integrated circuit devices by use of a pattern of dielectric material (30) having a thickness in the order of a micrometer or less. A pattern of recessed oxide isolation (32) between device areas in the substrate (10) is also self-aligned by this process. The result is a substantial planar integrated circuit structure. The process is applicable to either bipolar transistor integrated circuits or MOS field effect transistor integrated circuits.