Abstract:
Provided is a multi-point probe which is formed of a tubular laminate which is configured by winding an electronic contact sheet including a sheet-shaped insulating base material, a plurality of electronic contacts which are arranged to be separated from each other in a column shape on the sheet-shaped insulating base material, and a plurality of wirings which are connected to each of the electronic contacts on the sheet-shaped insulating base material from a first end towards a second end and laminating the electronic contact sheet to have multiple layers, in which the electronic contacts are not covered with the sheet-shaped insulating base material and are exposed, and the wirings other than a wiring on the uppermost layer are laminated so that at least some parts thereof are covered with the sheet-shaped insulating base material.
Abstract:
A stretchable conductor of the present invention includes: a mixture which is configured of a stretchable portion made of an elastomer, and at least one type of conductive particles dispersed in the stretchable portion; and a conducting portion in which the conductive particles are aggregated in a higher concentration at one or a plurality of positions on an interface of the mixture than that at positions located in an inner portion of the mixture.
Abstract:
A signal detection device according to an aspect of the invention includes a laminated structure of a first circuit layer (201) in which a plurality of electrodes brought into contact with a subject is formed, a second circuit layer (202) in which a plurality of amplifiers having an input portion capacitively coupled to the plurality of electrodes, respectively, is formed, and a third circuit layer (203) in which a plurality of transistors for reading outputs of the plurality of amplifiers is formed, an insulation layer which seals the second circuit layer is formed between the plurality of electrodes formed in the first circuit layer and the second circuit layer, and the plurality of electrodes and the input portions of the plurality of amplifiers are capacitively coupled to each other via the insulation layer.
Abstract:
Provided are a composition, a conductive material, and a method of manufacturing the same, in which the composition and the conductive material have biocompatibility, can be used in the living body for a long period of time, have superior followability to the shape of wrinkles of an organ or the like, and can form a far superior interface with an organ or the like. The composition includes a carbon nanomaterial that is covered with molecules constituting a hydrophilic ionic liquid, in which the carbon nanomaterial is dispersed in a water-soluble polymer medium, and the carbon nanomaterial is doubly covered with the molecules constituting the ionic liquid and a water-soluble polymer.
Abstract:
Provided is a multi-point probe which is formed of a tubular laminate which is configured by winding an electronic contact sheet including a sheet-shaped insulating base material, a plurality of electronic contacts which are arranged to be separated from each other in a column shape on the sheet-shaped insulating base material, and a plurality of wirings which are connected to each of the electronic contacts on the sheet-shaped insulating base material from a first end towards a second end and laminating the electronic contact sheet to have multiple layers, in which the electronic contacts are not covered with the sheet-shaped insulating base material and are exposed, and the wirings other than a wiring on the uppermost layer are laminated so that at least some parts thereof are covered with the sheet-shaped insulating base material.
Abstract:
A signal detection device includes: multiple electrodes that are arranged to come into contact with a subject that generates a signal; an electrode signal selection unit that alternatively selects one signal from signals on the multiple electrodes based on a selection signal; an amplification unit that amplifies the signal that is selected by the electrode signal selection unit; and a flexible substrate on which the multiple electrodes, the selection unit, and the amplification unit are formed, in which the amplification unit is formed on the substrate to form a laminated structure together with the multiple electrodes and the selection unit.
Abstract:
There is provided a biocompatible electrode structure which is capable of being connected to an electronic circuit, and in which a conductive nanomaterial is dispersed into a polymeric medium, in which a density of the conductive nanomaterial on an opposite side of a connection surface to the electronic circuit, in the polymeric medium is lower than that on the side of the connection surface to the electronic circuit.
Abstract:
The present invention provides a high-performance, highly homogeneous, highly stable electronic device by forming an extremely uniform interface between an insulator and an organic semiconductor, as well as an electronic apparatus using the same. The present invention relates to an electronic device which contains, as a component, an organic thin film in which a geometric two-dimensional arrangement is formed regularly by interdigitating skeletal structures of a positive three-pronged shape of triptycene and by adding a first molecule extending out of one plane of a two-dimensional molecular structure of the triptycene skeletal structure. The invention also relates to an electronic apparatus and the like which contains the electronic device in the interior of the electronic apparatus.